
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 1

Terrain and Model Queries Using Scalar
Representations With Wavelet Compression

Christoph Fünfzig, Torsten Ullrich, Dieter W. Fellner, and Edward N. Bachelder

Abstract—In this paper, we present efficient height/distance
field data structures for line-of-sight (LOS) queries on terrains
and collision queries on arbitrary 3-D models. The data struc-
ture uses a pyramid of quad-shaped regions with the original
height/distance field at the highest level and an overall minimum/
maximum value at the lower levels. The pyramid can compactly
be stored in a wavelet-like decomposition but using max and plus
operations. Additionally, we show how to get minimum/maximum
values for regions in a wavelet decomposition using real algebra.
For LOS calculations, we compare with a kd-tree representation
containing the maximum height values. Furthermore, we show
that the LOS calculation is a special case of a collision detection
query. Using our wavelet-like approach, even general and arbi-
trary collision detection queries can efficiently be answered.

Index Terms—Collision detection, distance fields, heightfield
interrogation, kd-tree data structure, line-of-sight (LOS) compu-
tation, pyramid algorithms, wavelets.

I. INTRODUCTION

THE SIMULATION and planning of realistic movements
governed by physics is necessary for many applications.

The simulation of movements is often based on collision de-
tection, as changes of movements occur at events, where geo-
metries collide.

Planning solutions like signal strength prediction [1], [2]
and antenna placement [3] may use ray-casting models for
electromagnetic wave propagation. In these models, the main
propagation paths are evaluated by rays (geometric optics), and
special wave effects are added at the intersection points of
the rays with the terrain surface. Of course, the line-of-sights
(LOSs) from the antennas account for the main propagation
paths. Thus, efficient LOS computation is an important means
for terrain interrogation.

In this paper, we present efficient height/distance field data
structures for LOS queries on terrains and collision queries

Manuscript received January 30, 2008; revised June 29, 2008. The Associate
Editor coordinating the review process for this paper was Dr. Annamaria
Varkonyi-Koczy.

C. Fünfzig is with the CAGD Group, Univ. Valenciennes et du Hainaut-
Cambrésis, FR CNRS 2956, 59300 Valenciennes, France (e-mail: c.fuenfzig@
gmx.de).

T. Ullrich is with the Institute of Computer Graphics and Knowledge
Visualization, Graz University of Technology, 8010 Graz, Austria (e-mail:
t.ullrich@cgv.tugraz.at).

D. W. Fellner is with the Department of Graphisch-Interaktive Sys-
teme (GRIS), Darmstadt University of Technology (TU Darmstadt), 64283
Darmstadt, Germany (e-mail: d.fellner@igd.fhg.de).

E. N. Bachelder is with Systems Technology Inc., Hawthorne, CA 90250
USA (e-mail: edbach@systemstech.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIM.2009.2016879

on arbitrary 3-D models. The data structure uses a pyramid
of quad-shaped regions with the original height/distance field
at the highest level and maximum values of regions at the
lower levels (maximum mipmap heightfield). The pyramid can
compactly be stored in a wavelet-like decomposition but us-
ing max and plus operations. Additionally, we show how to
get minimum/maximum values for regions in a nonstandard
wavelet decomposition in real algebra (wavelet heightfield).
For heightfields (like regular-grid terrains), the data structure is
similar to a 2-D kd-tree with added minimum/maximum height
values in inner nodes.

The technique for a single heightfield can be extended to
a spherical distance field for arbitrary 3-D models. With the
spherical distance field according to a fixed center point, conser-
vative distance bounds to the model can efficiently be queried.
Furthermore, we show that even general and arbitrary collision
detection queries can similarly be answered to LOS queries.

Applications: Height/distance field data sets are required in
various applications. Due to their size, they are commonly com-
pressed using a wavelet basis. Fig. 1 shows an example of a dis-
tance data set, compressed with the Daubechies-4 wavelet and
its subband coefficients adaptively quantized. The motivation
for this work is to directly use the compressed data sets (without
a complete decompression step) for queries (collision and LOS
tests). We call this on-the-fly decompression during querying,
which is similar to the coupling of decompression with render-
ing [4]. The benefits are much lower memory requirements at
the same or even smaller runtime. The problem of how to get
minimum/maximum values for representations with wavelets
in real algebra is covered in Section III-B. Using a special Haar
wavelet-like decomposition in max-plus algebra, the maximum
values of quad-shaped subregions are directly available from
the representation. Due to their small support and discontinuity,
they are worse in terms of compression efficiency but are very
fast to reconstruct and query. The construction and reconstruc-
tion of the maximum mipmap heightfields are described in
Section III-A.

II. RELATED WORK

Basic data structures used for the LOS computation prob-
lem are the grid structure and several tree-structured schemes.
The grid structure is a sampled representation, directly storing
height/distance values to a reference plane or reference surface.
There have been several approaches of compressing the grid
data, among them spatial hashing [5] and wavelet transform
[4]. The kd-tree is a binary tree with splits cycling through the
d dimensions. It has been invented for organizing point sets for

0018-9456/$25.00 © 2009 IEEE

2 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

Fig. 1. Reconstruction of point cloud (256 × 256) from Daubechies-4 wavelet representations. The scene consists of a sphere in the center and a plane in the
back right. (Left to right) 32-bit quantization in all subbands (MSE = 1.92876e − 019; MAXSE = 3.78111e − 018); 32 bits in bands 0–3, 16 bits in bands 4
and 5, 8 bits in band 6, and 4 bits in band 7 (MSE = 8.36761e − 005; MAXSE = 0.0261943); and 32 bits in bands 0 and 1, 16 bits in bands 2 and 3, 8 bits
in bands 4 and 5, 4 bits in band 6, and 2 bits in band 7 (MSE = 0.00229742; MAXSE = 0.78619). The MSE is the mean square error, i.e., the mean of square
differences between the original and the reconstructed distance values over the full image. The MAXSE is the maximum of all square difference values.

nearest neighbor searching [6] and stores data for rectangular
spatial cells in its nodes. Frisken et al. [7] use simultaneous
splits of all dimensions resulting in a 2d-ary tree and store data
for the cell corners. With bilinear interpolation on the space
region, they represent a continuous scalar function. Lefebvre
and Hoppe [8] covers the problem of encoding the tree topology
and the tree data with a combination of techniques suitable for
random access.

LOS Calculation: The most straightforward approach to cal-
culate LOS traverses the projection of the ray on the domain
plane and checks the ray heights against the heightfield heights
at a number of points per cell [9]. Different terrain recon-
struction is possible for noninteger grid positions: point recon-
struction, double linear interpolation, and bilinear interpolation.
Without a specific test for the reconstruction used, an exact LOS
test is not possible. By checking a number p of discrete points
per grid cell, large low-height regions cannot be exploited. The
approach always requires l · p height evaluations regardless of
the terrain traversed, where l is the ray length in cells.

Recently, graphics processing units (GPU) have also been
used to determine the LOS on a terrain (see [10] and [11]).
These approaches render both the terrain surface and the ray
line and test if all line fragments are above the terrain surface.
If this is the case, it is a LOS up to the image resolution
used for rendering and for terrain reconstruction. A special
hardware occlusion test is used for counting the number of
visible fragments.

There is also work on slightly extended visibility problems
like computing the horizon for each grid point and direction
sector [12]–[14]. Originally, the resulting horizon map was
invented for self-shadowing the terrain surface.

Collision Detection: Naive approaches to determine all col-
lisions of n object parts require a runtime of O(n2), which will
rapidly be too much in practice. Innumerable algorithms with
reduced runtime complexity have been developed in the last
decades. They can be classified according to different schemes
with regard to, e.g., field of application or solution strategy.

A general approach for collision detection uses hierarchies of
simple bounding volumes containing model parts. Researchers
have proposed several bounding volumes, including spheres,
axis-aligned bounding boxes, oriented bounding boxes, and
discrete orientation polytopes. Here, the performance depends
on the tightness of the bounding volume, the efficiency of the
intersection test for the bounding volume, and the strategy for
hierarchy generation [15], [16].

Fig. 2. Partitioning plane subdividing the ray into a near segment and a far
segment at the ray–plane intersection point.

Bounding volume hierarchies with deformable models re-
quire additional time for refitting. Several papers discuss opti-
mizations for special deformations like linear morphing, linear
blend skinning, and linear combined displacement fields [17].
In this area, simpler ones like Cartesian grids and 1-D arrays
accessed by hashing are commonly used. McNeely et al. [18]
and Teschner et al. [5] build a voxel grid for the static model,
where the points of a small movable model are queried against.
This approach guarantees the high feedback rate needed by a
haptic feedback device, and it is tailored to the haptic applica-
tion domain.

Several authors [19], [20] use Cartesian distance fields for
the implicit representation of models.

III. LOS CALCULATION BASED ON KD-TREES

A ray is defined by an origin point and a direction vector,
which implicitly gives a search order on the data domain
traversed by the ray. Thus, if the data domain is partitioned
into several parts, then these parts can be searched according to
the ray. LOS computation is a problem of this kind. Addition-
ally, the parameter interval of the ray inside a domain part is
available during traversal.

The simplest partition tree for a 2-D domain is a binary
tree with domain-orthogonal partitioning planes. The parameter
interval [0,∞] is subdivided by the ray–plane intersection point
at parameter split = �n · (�p − �o)/�n · �d into the near interval
[0, split] and the far interval [split,∞] (Fig. 2).

For axis-orthogonal partitioning planes, the ray–plane inter-
section computation split = (px − ox)/dx resp. split = (py −
oy)/dy is simple and, therefore, particularly fast to com-
pute. The resulting partitioning tree with alternating x- and
y-orthogonal planes is called a kd-tree of dimension 2. The

FÜNFZIG et al.: TERRAIN AND MODEL QUERIES USING SCALAR REPRESENTATIONS 3

Fig. 3. (Left) Two-dimensional heightfield shown as a grayscale image. Its nonstandard decomposition using a maximum operation. Green pixels mark positive
detail coefficients dj

k
, and red pixels mark negative coefficients dj

k
. A pixel’s intensity encodes the difference magnitude (consequently, small differences are in

black).

traversal of the kd-tree can be adapted for ray segments re-
stricted to a parameter interval [tnear, tfar]. The traversal visits
the near node iff [0, split] ∪ [tnear, tfar] = [tnear, split] is not
empty, and it visits the far node iff [split,∞] ∪ [tnear, tfar] =
[split, tfar] is not empty. This way, the interesting parameter
interval of the ray is always available for the current node.
The special cases, where the ray is parallel to the partitioning
plane (split = ∞) or pointing away from the partitioning plane
(split < 0), are easy to handle.

We described so far the traversal of a 2-D domain (the height-
field plane) by a kd-tree of dimension 2. For a 2.5-D heightfield,
which is a real height function on the 2-D domain, the approach
can be extended. If for each kd-tree node the maximum height
is available, then it can be used to prune subtrees of the
kd-tree from traversal. This simple extension requires only one
additional real value per inner node of the kd-tree.

As the domain part represented by a kd-tree node shrinks
with each subdivision, the leaf nodes represent single entries of
the heightfield grid. From these discrete measurements, terrain
surfaces can be reconstructed of various orders of continuity
and of polynomial type. The question “which one represents the
terrain best for a special application” has received considerable
interest [21].

The height of the kd-tree for a heightfield of size n · m is
log2(n · m), and the number of nodes is 2(n · m)). With over-
lapped splitting, the height is log2(n · m) + 2 and 8(n · m))
nodes. The data per node consist of two pointers (4 bytes each
on a 32-bit architecture), the real maximum height (8 bytes in
double precision), and the real split value (8 bytes in double
precision), so that the memory requirements sum up to 20 bytes
per node. For comparison, the given heightfield array consists
of n · m height values with 8 bytes per entry.

A. Nonstandard Decomposition in Max-Plus Algebra

The compressed grid for a heightfield of size n × m has
the same memory requirements as the square grid of side
length max(ñ, m̃) resp. 2 · max(ñ, m̃) with overlapped split-
ting, whereas x̃ denotes the smallest power of two greater than
or equal to x.

The inefficiency for nonpower-of-two and nonsquare formats
can be eliminated, for example, by tiling techniques (as done
in JPEG2000 [22]) or by a Boolean sequence, which gives the
orientation of the split, horizontal or vertical.

This way, the wavelet-like compressed grid is a different
storage scheme for the previously presented kd-tree. However,
if sufficient memory is available, the square power-of-two
format with its implicit 4-ary splitting is beneficial for caching
and runtime efficiency.

Using the notation introduced in [23] and [24], the heightfield
decomposition can be described by

cj−1
k = max

(
cj
2k, cj

2k+1

)
and dj−1

k = cj
2k − cj

2k+1

using maximum coefficients cj
k and the corresponding detail

coefficients dj
k. The composition step is then calculated by

cj+1
2k = cj

k + min
(
0, dj

k

)
and cj+1

2k+1 = cj
k − max

(
0, dj

k

)
.

Fig. 3 illustrates the results of a nonstandard decomposition
to a quadratic heightfield of size 220 × 220. In the nonstandard
decomposition, the application of the filter alternates between
columns and rows.

The analysis filter can be described in a short manner using
operations in max-plus algebra Rmax [25]. This way, the filter
process is very similar to one of Haar wavelets, although the

4 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

maximum filter does not satisfy the wavelet-filter definition
within the algebra Rmax.

B. Nonstandard Decomposition in Real Algebra

In the previous section, we described a wavelet-like de-
composition where the maximum value of a region is directly
available in the representation. Here, we want to show how
maximum computation is possible with a nonstandard wavelet
decomposition in real algebra. This is possible using a linear
combination of scalar basis functions on the domain. The
nonstandard approach to generate 2-D basis functions b(x, y)
is to combine two 1-D basis functions in a tensor-product
fashion, i.e.,

b(x, y) = b1(x) · b2(y). (1)

The 1-D basis functions b(x) can be grouped into subspaces
bi,k ∈ Vi, which build a nested set of vector spaces V0 ⊂ V1 ⊂
V2 ⊂ · · ·. As i increases, the dimension of Vi, and as a conse-
quence thereof the power to represent a function, increases. The
basis functions for the space Vi are known as scaling functions.

The orthogonal complement of Vj in Vj+1 is called Wj and
contains all functions in Vj+1 that are orthogonal to all those
in Vj according to a chosen inner product. The basis functions
of Wj are called wavelets. Altogether, the space Vi is decom-
posed into

Wi−1 ⊕ Vi−1 = Wi−1 ⊕ Wi−2 ⊕ · · · ⊕ W0 ⊕ V0 (2)

and for the 2-D tensor products ViVi

Wi−1Wi−1 ⊕ Wi−1Vi−1 ⊕ Vi−1Wi−1 ⊕ Vi−1Vi−1

= Wi−1Wi−1 ⊕ Wi−1Vi−1 ⊕ Vi−1Wi−1 ⊕ · · ·V0V0. (3)

Furthermore, the spaces Vj and Wj contain also the translated
functions f(x − k2−j), k integer, with each function f(x).
Similarly, the scaled functions f(2x) is in Vj−1 for each
function f(x) in Vj . A function f in space ViVi can be re-
presented as

f(x, y) =
∑
(k,l)

ck,lbk(x)bl(y) (4)

where {bk} and {bl} span the spaces Vj and Wj with 0 ≤ j < i.
Due to the finite small support of basis functions bk(x)bl(y), it
is possible to express the maximum

max {f(x, y) : (x, y) ∈ D1 × D2}
≤

∑
(k,l)∈P (D1,D2)

ck,l max{bk|D1}max{bl|D2}

+
∑

(k,l)∈N(D1,D2)

ck,l min{bk|D1}min{bl|D2} (5)

as a linear combination of the basis function’s minima/maxima,
where P (D1,D2) ∪ N(D1,D2) are all index pairs, for
which support{bk} ∩ D1 	=
 and support{bl} ∩ D2 	=
,
and P (D1,D2) are the index pairs with positive coefficients
and N(D1,D2) are the index pairs with negative coefficients,
respectively. A sampled representation of bk ∈ Vj and bk ∈ Wj

Fig. 4. Maximum values of positive coefficients (and, similarly, minimum
values of negative coefficients) at different levels j.

can be determined by reconstructing the basis function from
an impulse. As the spaces Vj and Wj are highly structured,
the minima/maxima of basis functions on their support can be
precomputed from a prototype impulse and systematically tab-
ulated. The sum (5) incorporates an increasing number of basis
functions at higher levels of the decomposition, starting with
the value corresponding to V0V0. At level j, there are 3 · 2j · 2j

basis functions, and altogether, there are 1 + 3
∑

j=0,...,n 2j2j

summands. For efficiently computing a lower/upper bound, we
can precompute the maximum cmax1

j of all positive coeffi-
cients corresponding to space WjVj and the minimum cmin1

j

of all negative coefficients corresponding to space WjVj at level
j. Similarly, we denote the maximum cmax2

j , the minimum
cmin2

j corresponding to space WjWj , and cmax3
j , cmin3

j cor-
responding to space VjWj . With these values, we can compute
a weaker upper bound

max {f(x, y) : (x, y) ∈ D1 × D2}
≤ c0,0 max{b0|b0 ∈ V0V0}

+
∑

j=1,...,n

cmax1
j max{b1|b1 ∈ WjVj}

+
∑

j=1,...,n

cmin1
j min{b1|b1 ∈ WjVj}

+
∑

j=1,...,n

cmax2
j max{b2|b2 ∈ WjWj}

+
∑

j=1,...,n

cmin2
j min{b2|b2 ∈ WjWj}

+
∑

j=1,...,n

cmax3
j max{b3|b3 ∈ VjWj}

+
∑

j=1,...,n

cmin3
j min{b3|b3 ∈ VjWj} (6)

with only 6n + 1 summands. Fig. 4 sketches the domain sec-
tions for which minimum/maximum values are precomputed.

FÜNFZIG et al.: TERRAIN AND MODEL QUERIES USING SCALAR REPRESENTATIONS 5

TABLE I
TIMINGS OF LOS COMPUTATION ON THE SAME HEIGHTFIELDS IN

DIFFERENT RESOLUTIONS (QUERIES TO TWO GROUND

STATIONS PER HEIGHTFIELD PIXEL)

TABLE II
TIMINGS OF DIFFERENT SEARCH DIRECTIONS: FORWARD, BACKWARD, OR

BASED ON WHICH ONE WAS FASTER IN THE LAST QUERY (HEIGHTFIELD

OF RESOLUTION 220 × 220 WITH TWO GROUND STATIONS)

C. Empirical Comparison

We have implemented the kd-tree data structure and its
compressed variant with LOS computation. In this section, we
give a short comparison of its performance in terms of data
set sizes and search directions. A detailed comparison can be
found in [26].

Table I lists the computation times for different resolutions
of the same heightfield data set. All timings were taken on
a Windows XP system with an Intel Pentium M 1.6-GHz
processor and 1.5-GB RAM. Point reconstruction is fastest as
it needs to access only a single height value at the leaf level.
For bilinear approximate and bilinear reconstruction, we try
to keep the four leaf nodes required for the reconstruction
sequentially in memory. The resulting performance is roughly
3/4 of that of point reconstruction. In particular, it is notable
that the wavelet-based storage scheme is nearly as fast as the
kd-tree with fully stored inner nodes. For the more complex
bilinear reconstruction in leaf nodes, the difference is even
smaller.

The tests comparing search directions in Table II show that
using the information where the intersection point was in the
last query (at a different height or in a horizontal or vertical
neighbor) is most successful. In addition, this information is
very easy to exploit. Note that it is not easy to predict if a
forward or backward search has a shorter search length up to
an intersection as it requires carrying out the search.

Fig. 5. Typical sphere parameterization and an alternative.

IV. COLLISION DETECTION BASED ON SPHERICAL

DISTANCE FIELDS

Using a spherical distance field, we developed a collision
detection algorithm [27]. In contrast to multiresolution mesh
representations with wavelets [28] or progressive meshes [29],
our approach is simpler and does not reproduce the model
topology but allows one to efficiently generate conservative
bounding volumes for model parts.

The spherical sampling according to a single center point
requires a spherical parameterization, where we have chosen
one with six charts derived from the box sides. The use of a
spherical representation allows fast model rotation and on-the-
fly generation of spherical shell bounding volumes for model
parts.

Like most collision detection algorithms, this approach con-
sists of two parts: a preprocessing step and a testing routine,
which represents the intrinsic collision test.

During the preprocessing step, the algorithm takes an initial
model and determines a model center. The choice of the cen-
ter point and its position is very important for the sampling
process. A center point, with respect to which the model is star
shaped, is preferable. However, even if such a star exists, it is
expensive to compute. Heuristic choices such as the center of an
enclosing sphere or the model’s mass center are good enough to
serve as a sampling center. The result of the sampling process
is a spherical heightfield r(φ, θ) over the parameter domain
[0, 2π] × [−(π/2), (π/2)], which encloses the whole object.

As in this parameterization all meridians coincide with each
other at the poles, an intersection test in a near pole region
would lead to many descending tests and a bad performance.
Therefore, another sphere parameterization, which is illustrated
in Fig. 5, is used. It subdivides a sphere into six separate
congruent regions and applies an angle-based parameterization
to each side. Subsampling of the six charts of our spherical
representation is done analogous to a discretized Cartesian
heightfield explained above. An illustrative example is shown
in Fig. 6.

Having transformed all objects this way, it is possible to
perform a simple and fast collision test. At runtime, the inter-
section test starts with the model representation at the lowest
resolution and tests whether they collide or not. If this test
is positive, the level of detail will be increased. Thereby, it
is important for performance purposes that only intersecting
sectors are considered further on.

6 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

Fig. 6. Banana model, with (top) maximum distances on the six sides shown
as grayscale images with a resolution of 16 × 16 and (bottom) corresponding
transforms. The lower left sample contains the overall maximum distance.
The other samples are differences as in a nonstandard decomposition, where
red/green encodes the difference sign (negative/positive), and intensity encodes
the difference magnitude (consequently, small differences are in black).

As long as there are intersecting sectors of different objects,
the algorithm refines the objects. If the algorithm reaches the
highest resolution of an object, the collision test is performed on
the object primitives, which determines the colliding subparts.

The most relevant part concerning performance is the inter-
section test routine. Without a doubt, the test has to report an
intersection, if there is one. However, if there is no intersection,
the test may report one by mistake. The less faulty positive
results are reported, the faster the algorithm works, as unnec-
essary refinements are omitted. Therefore, balancing accuracy
and efficiency are essential.

At level 0, both objects to test are enclosed by tight spheres.
The test, whether two spheres intersect each other, is that
simple, that there is no need for simplification. However, at all
other levels of detail, the algorithm has to check two sphere
sections, which is analyzed in the list that follows.

1) So-called bounding volume tests enclose the objects to
test within geometrically simpler objects; for example,

a polygonal frustum might be used to enclose a sphere
section. Although the intersection test of two polygonal
frustums is rather simple, the amount of tests increases,
and the enclosing quality is rather bad.

2) A totally different approach to check for intersections
uses interval/affine arithmetics [30]. In theory, this ap-
proach offers an exact and fast intersection test. Although
such a test might exist, a practical test has not yet been
implemented.

3) The intersection test presented in [31] is based on al-
gebraic tests for intersection. This test is suitable for
our purposes, but due to its complexity and compu-
tational expense, we prefer a computationally cheaper
alternative.

The following geometrical test shows reasonable perfor-
mance. Checking two capped cones in 3-D is nontrivial. Subject
to the orientation of the cone axes, two cases are analyzed.
The first case deals with nonparallel axes, whereas the second
case deals with parallel lines. A heuristically chosen (angle)
threshold distinguishes between the nonparallel and parallel
cases.

In the nonparallel case for both axes, the shortest distance
and the corresponding perpendicular points P1 and P2 are
determined. The test itself considers cone sections. One cone
is intersected with a plane containing the first cone’s center and
the line through P1 and P2. This results in a well-known cone
section. The first cone is reduced to a line, which passes the
first cone’s center and the point that you get by translating P1

within the considered plane toward the cone section’s focus.
The intersection test is then reduced to a 2-D intersection test
between a cone section and a line.

In the parallel case, the algorithm analyzes the projection
of one cone onto the other cone’s axis and vice versa. For
each projection, two distance checks of points against their
according radii are performed, which results in a total of four
checks. The special case of parallel lines is separately handled
for optimization, as in this case the whole test can be done by
some interval checks, which are much faster.

Together with a quick rejection test (consider bounding cylin-
ders instead of cones) and a quick acceptance test (consider
spheres inside the cones) for the nonparallel case, the algorithm
is reasonably fast.

Collision Detection Comparison: To show the efficiency of
the new collision detection method, we have run a series of
benchmarks on a Windows PC with a Pentium M 1.6-GHz
processor. Realistically benchmarking collision detection algo-
rithms is a difficult task. This is because there is a wealth of
models with different characteristics and motions relative to
each other. In [32], a benchmarking scheme for two models
each contained in a unit box is proposed, where the second
object performs a number of full-z rotations (in 1000 frames)
at decreasing distances relative to the first object.

To compare this approach with well-known collision de-
tection methods, we have included timings using an 18-sided
discrete orientation polytope (18-DOP) [32] and oriented
bounding boxes as in the publicly available library RAPID [33].
These approaches also report all triangle pairs in collision.

FÜNFZIG et al.: TERRAIN AND MODEL QUERIES USING SCALAR REPRESENTATIONS 7

Fig. 7. Collision test for models Tree (4316 triangles) and Beetle (57 243 triangles). The line drawings show the axis of each capped cone of the discretized
models. The benchmark “Transform” reports all triangle pairs in collision without elimination of duplicates; “TransformSingleLayer” reports a single triangle pair
per layer of a colliding shell pair; and “TransformSingle” reports a single triangle pair in a colliding shell pair. For comparison, 18-DOP bounding volumes and
oriented bounding volumes (public library RAPID) are shown.

The Fig. 7 contains the collision test models: a tree model
colliding with a Beetle car model. This test demonstrates the
algorithm’s ability to handle all kinds of models. Absolutely
unstructured polygon soups, as used for the leaves within the
tree model, can be handled the same way like all other kinds
of representations without any problems. Furthermore, the tree
model is neither convex nor star shaped.

If reporting only a single triangle per spherical shell, the
timings do not very much vary. In this mode of collision
determination, the collision time is independent of the triangle
count. It only depends on the sampling density and the volume
between the inner and outer bounding shells.

V. CONCLUSION

We have presented a new collision detection algorithm,
which is suitable for all model types, e.g., polygon soups,
surfaces, and volumetric models. It is simple to implement, and
its storage scheme consumes half the space compared to the full
storage of the hierarchical spherical distance field.

The approach is scalable in the information it gives in colli-
sion determination. If it reports a single triangle per spherical
shell, then the collision time only depends on the sampling
density and the volume of spherical shells, which are used
as bounding volumes, but not on the primitives’ count of the
model. Due to this fact, it is possible to tightly estimate the time
bounds for the collision test. For bounding volume hierarchies,
the worst-case time bounds are not tight in general, as the
bounding volumes can arbitrarily overlap in space.

If we check all triangle pairs inside a spherical shell for
intersection, then the approach works well in situations with
few collisions, which are the most relevant in practice. In close-
proximity situations, the algorithm degenerates to comparing
triangle lists sorted according to the center distances of a
triangle point.

Furthermore, we have shown that LOS calculation and col-
lision detection can similarly be handled. Our wavelet-like
storage scheme can be used with both arbitrary collision de-
tection queries and LOS queries to create a more compact
representation in memory.

REFERENCES

[1] D. W. Fellner and N. Schenk, “MRT—A tool for simulations in 3D
geometric domains,” in Proc. ESM, Jun. 1997, pp. 185–188.

[2] A. Schmitz and M. Wenig, “The effect of the radio wave propagation
model in mobile ad hoc networks,” in Proc. 9th ACM Int. Symp. Model.,
Anal. Simul. Wireless Mobile Syst. (MSWiM), 2006, pp. 61–67.

[3] M. Allegretti, M. Colaneri, R. Notarpietro, M. Gabella, and G. Perona,
“Simulation in urban environment of a 3D ray tracing propagation mo-
del based on building database preprocessing,” in Proc. URSI Gen.
Assem., 2005. [Online]. Available: www.ursi.org/Proceedings/ProcGA05/
pdf/CP1.7(0958).pdf

[4] C. K. Yang, “Integration of volume visualization and compression: A
survey,” State Univ. New York, Stony Brook, NY, Tech. Rep. RPE-10,
Aug. 2000.

[5] M. Teschner, B. Heidelberger, M. Mueller, D. Pomeranets, and M. Gross,
“Optimized spatial hashing for collision detection of deformable objects,”
in Proc. Vis., Model., Vis., Nov. 2003, pp. 47–54.

[6] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517, Sep. 1975.

[7] S. F. Frisken, R. N. Perry, A. P. Rockwood, and T. R. Jones, “Adaptively
sampled distance fields: A general representation of shape for computer
graphics,” in Proc. SIGGRAPH, 2000, pp. 249–254.

[8] S. Lefebvre and H. Hoppe, “Compressed random-access trees for spatially
coherent data,” in Proc. EG Symp. Rendering, Aug. 2007, pp. 339–350.

[9] M. D. Proctor and W. J. Gerber, “Line-of-sight attributes for a gener-
alized application program interface,” JDMS, vol. 1, no. 1, pp. 43–57,
Apr. 2004.

[10] B. Salomon, N. Govindaraju, A. Sud, R. Gayle, M. Lin, D. Manocha,
B. Butler, M. Bauer, A. Rodriguez, L. Eifert, A. Rubel, and
M. Macedonia, “Accelerating line of sight computation using graphics
processing units,” in Proc. 24th Army Sci. Conf., 2005. ADA433414.
[Online]. Available: http://www.dtic.mil/cgi-bin/GetTRDoc?AD=
ADA433414&Location=U2&doc=GetTRDoc.pdf

[11] D. Tuft, B. Salomon, S. Hanlon, and D. Manocha, “Fast line-of-sight
computations in complex environments,” Univ. North Carolina, Chapel
Hill, NC, Tech. Rep. TR05-025, 2005.

8 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

[12] N. L. Max, “Horizon mapping: Shadows for bump-mapped surfaces,” Vis.
Comput., vol. 4, no. 2, pp. 109–117, Mar. 1988.

[13] H. Rushmeier, L. Balmelli, and F. Bernardini, “Horizon map capture,”
Comput. Graph. Forum, vol. 20, no. 3, pp. 85–94, Sep. 2001.

[14] J. A. Stewart, “Fast horizon computation at all points of a terrain with
visibility and shading applications,” IEEE Trans. Vis. Comput. Graph.,
vol. 4, no. 1, pp. 82–93, Jan. 1998.

[15] M. C. Lin and S. Gottschalk, “Collision detection between geome-
tric models: A survey,” in Proc. 8th IMA Conf. Math. Surfaces, 1998,
pp. 37–56.

[16] M. C. Lin and D. Manocha, “Collision and proximity queries,” in Hand-
book of Discrete and Computational Geometry. Boca Raton, FL: CRC
Press, 2003.

[17] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghupathi,
A. Fuhrmann, M.-P. Cani, F. Faure, N. Magnenat-Thalmann, W. Strasser,
and P. Volino, “Collision detection for deformable objects,” in Proc.
Eurographics, 2004, pp. 119–140. State-of-the-Art Report.

[18] W. A. McNeely, K. D. Puterbaugh, and J. J. Troy, “Six degrees-of-
freedom haptic rendering using voxel sampling,” in Proc. SIGGRAPH,
1999, pp. 401–408.

[19] A. Fuhrmann, G. Sobottka, and C. Groß, “Distance fields for rapid
collision detection in physically based modeling,” in Proc. GraphiCon,
Sep. 2003, pp. 58–65.

[20] S. Fisher and M. C. Lin, “Deformed distance fields for simulation of non-
penetrating flexible bodies,” in Proc. EG Workshop Comput. Animation
Simul., 2001, pp. 99–111.

[21] D. Kidner, M. Dorey, and D. Smith, “What’s the point? Interpola-
tion and extrapolation with a regular grid DEM,” in Proc. GeoCom-
putation, 1999. [Online]. Available: http://www.geovista.psu.edu/sites/
geocomp99/Gc99/082/gc_082.htm

[22] C. Christopoulos, A. Skodras, and T. Ebrahimi, “The JPEG2000 still
image coding: An overview,” IEEE Trans. Consum. Electron., vol. 46,
no. 4, pp. 1103–1127, Nov. 2000.

[23] E. J. Stollnitz, T. D. DeRose, and D. H. Salesin, “Wavelets for computer
graphics: A primer, Part 1,” IEEE Comput. Graph. Appl., vol. 15, no. 3,
pp. 76–84, May 1995.

[24] E. J. Stollnitz, T. D. DeRose, and D. H. Salesin, “Wavelets for computer
graphics: A primer, Part 2,” IEEE Comput. Graph. Appl., vol. 15, no. 4,
pp. 75–85, Jul. 1995.

[25] M. Akian, G. Cohen, S. Gaubert, R. Nikhoukhah, and J. P. Quadrat, “Lin-
ear systems in (max, +) algebra,” in Proc. 29th Conf. Decision Control,
Honolulu, HI, Dec. 1990, pp. 151–156.

[26] C. Fünfzig, T. Ullrich, D. W. Fellner, and E. N. Bachelder, “Empirical
comparison of data structures for line-of-sight computation,” in Proc.
IEEE Int. Symp. Intell. Signal Process. (WISP), 2007, vol. 1, pp. 291–296.

[27] C. Fünfzig, T. Ullrich, and D. W. Fellner, “Hierarchical spherical distance
fields for collision detection,” IEEE Comput. Graph. Appl., vol. 26, no. 1,
pp. 64–74, Jan./Feb. 2006.

[28] S. Valette and R. Prost, “Wavelet based multiresolution analysis of irreg-
ular surface meshes,” IEEE Trans. Vis. Comput. Graph., vol. 10, no. 2,
pp. 113–122, Mar./Apr. 2004.

[29] H. Hoppe, “Efficient implementation of progressive meshes,” Comput.
Graph., vol. 22, no. 1, pp. 27–36, Feb. 1998.

[30] K. Bühler, “Taylor models and affine arithmetics: Towards a more sophis-
ticated use of reliable methods in computer graphics,” in Proc. Spring
Conf. Comput. Graph., 2001, vol. 17, pp. 40–48.

[31] S. Krishnan, A. Pattekar, and M. C. Lin, “Spherical shell: A higher order
bounding volume for fast proximity queries,” in Proc. 3rd Workshop
Algorithmic Found. Robot., 1998, vol. 3, pp. 177–190.

[32] G. Zachmann, “Rapid collision detection by dynamically aligned DOP-
trees,” in Proc. Virtual Reality Annu. Int. Symp., 1998, pp. 90–97.

[33] S. Gottschalk, M. C. Lin, and D. Manocha, “OBB-tree: A hierarchical
structure for rapid interference detection,” in Proc. SIGGRAPH, 1996,
pp. 171–180.

Christoph Fünfzig received the M.Sc. degree from
the University Bonn, Bonn, Germany, and the Ph.D.
degree in computer science from Braunschweig Uni-
versity of Technology, Braunschweig, Germany.

He is currently with the CAGD Group, Univ.
Valenciennes et du Hainaut-Cambrésis, FR CNRS
2956, Valenciennes, France. His research interests
include practical computational geometry, anima-
tion and simulation in computer graphics, virtual/
augmented reality, and scientific visualization.

Torsten Ullrich received the M.Sc. degree in math-
ematics from Karlsruhe Institute of Technology,
Karlsruhe, Germany. He is currently working toward
the Ph.D. degree in computer science with Graz
University of Technology, Graz, Austria.

His research has been concerned with computer-
aided geometric design topics, including modeling
and reconstruction.

Dieter W. Fellner received the M.Sc. and Ph.D.
degrees from Graz University of Technology,
Graz, Austria.

He is the Director of the Fraunhofer Institute of
Computer Graphics (IGD), Darmstadt, Germany,
and a Professor of computer science with Darmstadt
University of Technology (TU Darmstadt),
Darmstadt, with a joint affiliation with Graz Uni-
versity of Technology. His research interests include
computer graphics, modeling, immersive systems,
and graphics in digital libraries. He has held

academic positions with universities in Graz, Austria; Denver, CO; St. John’s,
NF, Canada; Bonn, Germany; and Braunschweig, Germany.

Dr. Fellner is a member of the Association for Computing Machinery,
Eurographics, and Gesellschaft für Informatik (GI). He is on the Editorial
Board of several international journals, IEEE COMPUTER GRAPHICS AND

APPLICATIONS being one of them.

Edward N. Bachelder received the Ph.D. degree
from the Massachusetts Institute of Technology,
Cambridge.

Prior to receiving his Ph.D. degree, he was a Naval
Aviator flying the SH-60B. He is currently a Prin-
cipal Research engineer with Systems Technology
Inc., Hawthorne, CA. His areas of research include
augmented reality, optimized control guidance for
helicopter autorotation training and operation, real-
time path optimization, system identification (ex-
tremely low to very high frequency regimes) using

sparse excitation, 3-D helicopter cueing for precision hover, and nap-of-earth
flight.

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 1

Terrain and Model Queries Using Scalar
Representations With Wavelet Compression

Christoph Fünfzig, Torsten Ullrich, Dieter W. Fellner, and Edward N. Bachelder

Abstract—In this paper, we present efficient height/distance
field data structures for line-of-sight (LOS) queries on terrains
and collision queries on arbitrary 3-D models. The data struc-
ture uses a pyramid of quad-shaped regions with the original
height/distance field at the highest level and an overall minimum/
maximum value at the lower levels. The pyramid can compactly
be stored in a wavelet-like decomposition but using max and plus
operations. Additionally, we show how to get minimum/maximum
values for regions in a wavelet decomposition using real algebra.
For LOS calculations, we compare with a kd-tree representation
containing the maximum height values. Furthermore, we show
that the LOS calculation is a special case of a collision detection
query. Using our wavelet-like approach, even general and arbi-
trary collision detection queries can efficiently be answered.

Index Terms—Collision detection, distance fields, heightfield
interrogation, kd-tree data structure, line-of-sight (LOS) compu-
tation, pyramid algorithms, wavelets.

I. INTRODUCTION

THE SIMULATION and planning of realistic movements
governed by physics is necessary for many applications.

The simulation of movements is often based on collision de-
tection, as changes of movements occur at events, where geo-
metries collide.

Planning solutions like signal strength prediction [1], [2]
and antenna placement [3] may use ray-casting models for
electromagnetic wave propagation. In these models, the main
propagation paths are evaluated by rays (geometric optics), and
special wave effects are added at the intersection points of
the rays with the terrain surface. Of course, the line-of-sights
(LOSs) from the antennas account for the main propagation
paths. Thus, efficient LOS computation is an important means
for terrain interrogation.

In this paper, we present efficient height/distance field data
structures for LOS queries on terrains and collision queries

Manuscript received January 30, 2008; revised June 29, 2008. The Associate
Editor coordinating the review process for this paper was Dr. Annamaria
Varkonyi-Koczy.

C. Fünfzig is with the CAGD Group, Univ. Valenciennes et du Hainaut-
Cambrésis, FR CNRS 2956, 59300 Valenciennes, France (e-mail: c.fuenfzig@
gmx.de).

T. Ullrich is with the Institute of Computer Graphics and Knowledge
Visualization, Graz University of Technology, 8010 Graz, Austria (e-mail:
t.ullrich@cgv.tugraz.at).

D. W. Fellner is with the Department of Graphisch-Interaktive Sys-
teme (GRIS), Darmstadt University of Technology (TU Darmstadt), 64283
Darmstadt, Germany (e-mail: d.fellner@igd.fhg.de).

E. N. Bachelder is with Systems Technology Inc., Hawthorne, CA 90250
USA (e-mail: edbach@systemstech.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIM.2009.2016879

on arbitrary 3-D models. The data structure uses a pyramid
of quad-shaped regions with the original height/distance field
at the highest level and maximum values of regions at the
lower levels (maximum mipmap heightfield). The pyramid can
compactly be stored in a wavelet-like decomposition but us-
ing max and plus operations. Additionally, we show how to
get minimum/maximum values for regions in a nonstandard
wavelet decomposition in real algebra (wavelet heightfield).
For heightfields (like regular-grid terrains), the data structure is
similar to a 2-D kd-tree with added minimum/maximum height
values in inner nodes.

The technique for a single heightfield can be extended to
a spherical distance field for arbitrary 3-D models. With the
spherical distance field according to a fixed center point, conser-
vative distance bounds to the model can efficiently be queried.
Furthermore, we show that even general and arbitrary collision
detection queries can similarly be answered to LOS queries.

Applications: Height/distance field data sets are required in
various applications. Due to their size, they are commonly com-
pressed using a wavelet basis. Fig. 1 shows an example of a dis-
tance data set, compressed with the Daubechies-4 wavelet and
its subband coefficients adaptively quantized. The motivation
for this work is to directly use the compressed data sets (without
a complete decompression step) for queries (collision and LOS
tests). We call this on-the-fly decompression during querying,
which is similar to the coupling of decompression with render-
ing [4]. The benefits are much lower memory requirements at
the same or even smaller runtime. The problem of how to get
minimum/maximum values for representations with wavelets
in real algebra is covered in Section III-B. Using a special Haar
wavelet-like decomposition in max-plus algebra, the maximum
values of quad-shaped subregions are directly available from
the representation. Due to their small support and discontinuity,
they are worse in terms of compression efficiency but are very
fast to reconstruct and query. The construction and reconstruc-
tion of the maximum mipmap heightfields are described in
Section III-A.

II. RELATED WORK

Basic data structures used for the LOS computation prob-
lem are the grid structure and several tree-structured schemes.
The grid structure is a sampled representation, directly storing
height/distance values to a reference plane or reference surface.
There have been several approaches of compressing the grid
data, among them spatial hashing [5] and wavelet transform
[4]. The kd-tree is a binary tree with splits cycling through the
d dimensions. It has been invented for organizing point sets for

0018-9456/$25.00 © 2009 IEEE

2 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

Fig. 1. Reconstruction of point cloud (256 × 256) from Daubechies-4 wavelet representations. The scene consists of a sphere in the center and a plane in the
back right. (Left to right) 32-bit quantization in all subbands (MSE = 1.92876e − 019; MAXSE = 3.78111e − 018); 32 bits in bands 0–3, 16 bits in bands 4
and 5, 8 bits in band 6, and 4 bits in band 7 (MSE = 8.36761e − 005; MAXSE = 0.0261943); and 32 bits in bands 0 and 1, 16 bits in bands 2 and 3, 8 bits
in bands 4 and 5, 4 bits in band 6, and 2 bits in band 7 (MSE = 0.00229742; MAXSE = 0.78619). The MSE is the mean square error, i.e., the mean of square
differences between the original and the reconstructed distance values over the full image. The MAXSE is the maximum of all square difference values.

nearest neighbor searching [6] and stores data for rectangular
spatial cells in its nodes. Frisken et al. [7] use simultaneous
splits of all dimensions resulting in a 2d-ary tree and store data
for the cell corners. With bilinear interpolation on the space
region, they represent a continuous scalar function. Lefebvre
and Hoppe [8] covers the problem of encoding the tree topology
and the tree data with a combination of techniques suitable for
random access.

LOS Calculation: The most straightforward approach to cal-
culate LOS traverses the projection of the ray on the domain
plane and checks the ray heights against the heightfield heights
at a number of points per cell [9]. Different terrain recon-
struction is possible for noninteger grid positions: point recon-
struction, double linear interpolation, and bilinear interpolation.
Without a specific test for the reconstruction used, an exact LOS
test is not possible. By checking a number p of discrete points
per grid cell, large low-height regions cannot be exploited. The
approach always requires l · p height evaluations regardless of
the terrain traversed, where l is the ray length in cells.

Recently, graphics processing units (GPU) have also been
used to determine the LOS on a terrain (see [10] and [11]).
These approaches render both the terrain surface and the ray
line and test if all line fragments are above the terrain surface.
If this is the case, it is a LOS up to the image resolution
used for rendering and for terrain reconstruction. A special
hardware occlusion test is used for counting the number of
visible fragments.

There is also work on slightly extended visibility problems
like computing the horizon for each grid point and direction
sector [12]–[14]. Originally, the resulting horizon map was
invented for self-shadowing the terrain surface.

Collision Detection: Naive approaches to determine all col-
lisions of n object parts require a runtime of O(n2), which will
rapidly be too much in practice. Innumerable algorithms with
reduced runtime complexity have been developed in the last
decades. They can be classified according to different schemes
with regard to, e.g., field of application or solution strategy.

A general approach for collision detection uses hierarchies of
simple bounding volumes containing model parts. Researchers
have proposed several bounding volumes, including spheres,
axis-aligned bounding boxes, oriented bounding boxes, and
discrete orientation polytopes. Here, the performance depends
on the tightness of the bounding volume, the efficiency of the
intersection test for the bounding volume, and the strategy for
hierarchy generation [15], [16].

Fig. 2. Partitioning plane subdividing the ray into a near segment and a far
segment at the ray–plane intersection point.

Bounding volume hierarchies with deformable models re-
quire additional time for refitting. Several papers discuss opti-
mizations for special deformations like linear morphing, linear
blend skinning, and linear combined displacement fields [17].
In this area, simpler ones like Cartesian grids and 1-D arrays
accessed by hashing are commonly used. McNeely et al. [18]
and Teschner et al. [5] build a voxel grid for the static model,
where the points of a small movable model are queried against.
This approach guarantees the high feedback rate needed by a
haptic feedback device, and it is tailored to the haptic applica-
tion domain.

Several authors [19], [20] use Cartesian distance fields for
the implicit representation of models.

III. LOS CALCULATION BASED ON KD-TREES

A ray is defined by an origin point and a direction vector,
which implicitly gives a search order on the data domain
traversed by the ray. Thus, if the data domain is partitioned
into several parts, then these parts can be searched according to
the ray. LOS computation is a problem of this kind. Addition-
ally, the parameter interval of the ray inside a domain part is
available during traversal.

The simplest partition tree for a 2-D domain is a binary
tree with domain-orthogonal partitioning planes. The parameter
interval [0,∞] is subdivided by the ray–plane intersection point
at parameter split = �n · (�p − �o)/�n · �d into the near interval
[0, split] and the far interval [split,∞] (Fig. 2).

For axis-orthogonal partitioning planes, the ray–plane inter-
section computation split = (px − ox)/dx resp. split = (py −
oy)/dy is simple and, therefore, particularly fast to com-
pute. The resulting partitioning tree with alternating x- and
y-orthogonal planes is called a kd-tree of dimension 2. The

FÜNFZIG et al.: TERRAIN AND MODEL QUERIES USING SCALAR REPRESENTATIONS 3

Fig. 3. (Left) Two-dimensional heightfield shown as a grayscale image. Its nonstandard decomposition using a maximum operation. Green pixels mark positive
detail coefficients dj

k
, and red pixels mark negative coefficients dj

k
. A pixel’s intensity encodes the difference magnitude (consequently, small differences are in

black).

traversal of the kd-tree can be adapted for ray segments re-
stricted to a parameter interval [tnear, tfar]. The traversal visits
the near node iff [0, split] ∪ [tnear, tfar] = [tnear, split] is not
empty, and it visits the far node iff [split,∞] ∪ [tnear, tfar] =
[split, tfar] is not empty. This way, the interesting parameter
interval of the ray is always available for the current node.
The special cases, where the ray is parallel to the partitioning
plane (split = ∞) or pointing away from the partitioning plane
(split < 0), are easy to handle.

We described so far the traversal of a 2-D domain (the height-
field plane) by a kd-tree of dimension 2. For a 2.5-D heightfield,
which is a real height function on the 2-D domain, the approach
can be extended. If for each kd-tree node the maximum height
is available, then it can be used to prune subtrees of the
kd-tree from traversal. This simple extension requires only one
additional real value per inner node of the kd-tree.

As the domain part represented by a kd-tree node shrinks
with each subdivision, the leaf nodes represent single entries of
the heightfield grid. From these discrete measurements, terrain
surfaces can be reconstructed of various orders of continuity
and of polynomial type. The question “which one represents the
terrain best for a special application” has received considerable
interest [21].

The height of the kd-tree for a heightfield of size n · m is
log2(n · m), and the number of nodes is 2(n · m)). With over-
lapped splitting, the height is log2(n · m) + 2 and 8(n · m))
nodes. The data per node consist of two pointers (4 bytes each
on a 32-bit architecture), the real maximum height (8 bytes in
double precision), and the real split value (8 bytes in double
precision), so that the memory requirements sum up to 20 bytes
per node. For comparison, the given heightfield array consists
of n · m height values with 8 bytes per entry.

A. Nonstandard Decomposition in Max-Plus Algebra

The compressed grid for a heightfield of size n × m has
the same memory requirements as the square grid of side
length max(ñ, m̃) resp. 2 · max(ñ, m̃) with overlapped split-
ting, whereas x̃ denotes the smallest power of two greater than
or equal to x.

The inefficiency for nonpower-of-two and nonsquare formats
can be eliminated, for example, by tiling techniques (as done
in JPEG2000 [22]) or by a Boolean sequence, which gives the
orientation of the split, horizontal or vertical.

This way, the wavelet-like compressed grid is a different
storage scheme for the previously presented kd-tree. However,
if sufficient memory is available, the square power-of-two
format with its implicit 4-ary splitting is beneficial for caching
and runtime efficiency.

Using the notation introduced in [23] and [24], the heightfield
decomposition can be described by

cj−1
k = max

(
cj
2k, cj

2k+1

)
and dj−1

k = cj
2k − cj

2k+1

using maximum coefficients cj
k and the corresponding detail

coefficients dj
k. The composition step is then calculated by

cj+1
2k = cj

k + min
(
0, dj

k

)
and cj+1

2k+1 = cj
k − max

(
0, dj

k

)
.

Fig. 3 illustrates the results of a nonstandard decomposition
to a quadratic heightfield of size 220 × 220. In the nonstandard
decomposition, the application of the filter alternates between
columns and rows.

The analysis filter can be described in a short manner using
operations in max-plus algebra Rmax [25]. This way, the filter
process is very similar to one of Haar wavelets, although the

4 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

maximum filter does not satisfy the wavelet-filter definition
within the algebra Rmax.

B. Nonstandard Decomposition in Real Algebra

In the previous section, we described a wavelet-like de-
composition where the maximum value of a region is directly
available in the representation. Here, we want to show how
maximum computation is possible with a nonstandard wavelet
decomposition in real algebra. This is possible using a linear
combination of scalar basis functions on the domain. The
nonstandard approach to generate 2-D basis functions b(x, y)
is to combine two 1-D basis functions in a tensor-product
fashion, i.e.,

b(x, y) = b1(x) · b2(y). (1)

The 1-D basis functions b(x) can be grouped into subspaces
bi,k ∈ Vi, which build a nested set of vector spaces V0 ⊂ V1 ⊂
V2 ⊂ · · ·. As i increases, the dimension of Vi, and as a conse-
quence thereof the power to represent a function, increases. The
basis functions for the space Vi are known as scaling functions.

The orthogonal complement of Vj in Vj+1 is called Wj and
contains all functions in Vj+1 that are orthogonal to all those
in Vj according to a chosen inner product. The basis functions
of Wj are called wavelets. Altogether, the space Vi is decom-
posed into

Wi−1 ⊕ Vi−1 = Wi−1 ⊕ Wi−2 ⊕ · · · ⊕ W0 ⊕ V0 (2)

and for the 2-D tensor products ViVi

Wi−1Wi−1 ⊕ Wi−1Vi−1 ⊕ Vi−1Wi−1 ⊕ Vi−1Vi−1

= Wi−1Wi−1 ⊕ Wi−1Vi−1 ⊕ Vi−1Wi−1 ⊕ · · ·V0V0. (3)

Furthermore, the spaces Vj and Wj contain also the translated
functions f(x − k2−j), k integer, with each function f(x).
Similarly, the scaled functions f(2x) is in Vj−1 for each
function f(x) in Vj . A function f in space ViVi can be re-
presented as

f(x, y) =
∑
(k,l)

ck,lbk(x)bl(y) (4)

where {bk} and {bl} span the spaces Vj and Wj with 0 ≤ j < i.
Due to the finite small support of basis functions bk(x)bl(y), it
is possible to express the maximum

max {f(x, y) : (x, y) ∈ D1 × D2}
≤

∑
(k,l)∈P (D1,D2)

ck,l max{bk|D1}max{bl|D2}

+
∑

(k,l)∈N(D1,D2)

ck,l min{bk|D1}min{bl|D2} (5)

as a linear combination of the basis function’s minima/maxima,
where P (D1,D2) ∪ N(D1,D2) are all index pairs, for
which support{bk} ∩ D1 	=
 and support{bl} ∩ D2 	=
,
and P (D1,D2) are the index pairs with positive coefficients
and N(D1,D2) are the index pairs with negative coefficients,
respectively. A sampled representation of bk ∈ Vj and bk ∈ Wj

Fig. 4. Maximum values of positive coefficients (and, similarly, minimum
values of negative coefficients) at different levels j.

can be determined by reconstructing the basis function from
an impulse. As the spaces Vj and Wj are highly structured,
the minima/maxima of basis functions on their support can be
precomputed from a prototype impulse and systematically tab-
ulated. The sum (5) incorporates an increasing number of basis
functions at higher levels of the decomposition, starting with
the value corresponding to V0V0. At level j, there are 3 · 2j · 2j

basis functions, and altogether, there are 1 + 3
∑

j=0,...,n 2j2j

summands. For efficiently computing a lower/upper bound, we
can precompute the maximum cmax1

j of all positive coeffi-
cients corresponding to space WjVj and the minimum cmin1

j

of all negative coefficients corresponding to space WjVj at level
j. Similarly, we denote the maximum cmax2

j , the minimum
cmin2

j corresponding to space WjWj , and cmax3
j , cmin3

j cor-
responding to space VjWj . With these values, we can compute
a weaker upper bound

max {f(x, y) : (x, y) ∈ D1 × D2}
≤ c0,0 max{b0|b0 ∈ V0V0}

+
∑

j=1,...,n

cmax1
j max{b1|b1 ∈ WjVj}

+
∑

j=1,...,n

cmin1
j min{b1|b1 ∈ WjVj}

+
∑

j=1,...,n

cmax2
j max{b2|b2 ∈ WjWj}

+
∑

j=1,...,n

cmin2
j min{b2|b2 ∈ WjWj}

+
∑

j=1,...,n

cmax3
j max{b3|b3 ∈ VjWj}

+
∑

j=1,...,n

cmin3
j min{b3|b3 ∈ VjWj} (6)

with only 6n + 1 summands. Fig. 4 sketches the domain sec-
tions for which minimum/maximum values are precomputed.

FÜNFZIG et al.: TERRAIN AND MODEL QUERIES USING SCALAR REPRESENTATIONS 5

TABLE I
TIMINGS OF LOS COMPUTATION ON THE SAME HEIGHTFIELDS IN

DIFFERENT RESOLUTIONS (QUERIES TO TWO GROUND

STATIONS PER HEIGHTFIELD PIXEL)

TABLE II
TIMINGS OF DIFFERENT SEARCH DIRECTIONS: FORWARD, BACKWARD, OR

BASED ON WHICH ONE WAS FASTER IN THE LAST QUERY (HEIGHTFIELD

OF RESOLUTION 220 × 220 WITH TWO GROUND STATIONS)

C. Empirical Comparison

We have implemented the kd-tree data structure and its
compressed variant with LOS computation. In this section, we
give a short comparison of its performance in terms of data
set sizes and search directions. A detailed comparison can be
found in [26].

Table I lists the computation times for different resolutions
of the same heightfield data set. All timings were taken on
a Windows XP system with an Intel Pentium M 1.6-GHz
processor and 1.5-GB RAM. Point reconstruction is fastest as
it needs to access only a single height value at the leaf level.
For bilinear approximate and bilinear reconstruction, we try
to keep the four leaf nodes required for the reconstruction
sequentially in memory. The resulting performance is roughly
3/4 of that of point reconstruction. In particular, it is notable
that the wavelet-based storage scheme is nearly as fast as the
kd-tree with fully stored inner nodes. For the more complex
bilinear reconstruction in leaf nodes, the difference is even
smaller.

The tests comparing search directions in Table II show that
using the information where the intersection point was in the
last query (at a different height or in a horizontal or vertical
neighbor) is most successful. In addition, this information is
very easy to exploit. Note that it is not easy to predict if a
forward or backward search has a shorter search length up to
an intersection as it requires carrying out the search.

Fig. 5. Typical sphere parameterization and an alternative.

IV. COLLISION DETECTION BASED ON SPHERICAL

DISTANCE FIELDS

Using a spherical distance field, we developed a collision
detection algorithm [27]. In contrast to multiresolution mesh
representations with wavelets [28] or progressive meshes [29],
our approach is simpler and does not reproduce the model
topology but allows one to efficiently generate conservative
bounding volumes for model parts.

The spherical sampling according to a single center point
requires a spherical parameterization, where we have chosen
one with six charts derived from the box sides. The use of a
spherical representation allows fast model rotation and on-the-
fly generation of spherical shell bounding volumes for model
parts.

Like most collision detection algorithms, this approach con-
sists of two parts: a preprocessing step and a testing routine,
which represents the intrinsic collision test.

During the preprocessing step, the algorithm takes an initial
model and determines a model center. The choice of the cen-
ter point and its position is very important for the sampling
process. A center point, with respect to which the model is star
shaped, is preferable. However, even if such a star exists, it is
expensive to compute. Heuristic choices such as the center of an
enclosing sphere or the model’s mass center are good enough to
serve as a sampling center. The result of the sampling process
is a spherical heightfield r(φ, θ) over the parameter domain
[0, 2π] × [−(π/2), (π/2)], which encloses the whole object.

As in this parameterization all meridians coincide with each
other at the poles, an intersection test in a near pole region
would lead to many descending tests and a bad performance.
Therefore, another sphere parameterization, which is illustrated
in Fig. 5, is used. It subdivides a sphere into six separate
congruent regions and applies an angle-based parameterization
to each side. Subsampling of the six charts of our spherical
representation is done analogous to a discretized Cartesian
heightfield explained above. An illustrative example is shown
in Fig. 6.

Having transformed all objects this way, it is possible to
perform a simple and fast collision test. At runtime, the inter-
section test starts with the model representation at the lowest
resolution and tests whether they collide or not. If this test
is positive, the level of detail will be increased. Thereby, it
is important for performance purposes that only intersecting
sectors are considered further on.

6 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

Fig. 6. Banana model, with (top) maximum distances on the six sides shown
as grayscale images with a resolution of 16 × 16 and (bottom) corresponding
transforms. The lower left sample contains the overall maximum distance.
The other samples are differences as in a nonstandard decomposition, where
red/green encodes the difference sign (negative/positive), and intensity encodes
the difference magnitude (consequently, small differences are in black).

As long as there are intersecting sectors of different objects,
the algorithm refines the objects. If the algorithm reaches the
highest resolution of an object, the collision test is performed on
the object primitives, which determines the colliding subparts.

The most relevant part concerning performance is the inter-
section test routine. Without a doubt, the test has to report an
intersection, if there is one. However, if there is no intersection,
the test may report one by mistake. The less faulty positive
results are reported, the faster the algorithm works, as unnec-
essary refinements are omitted. Therefore, balancing accuracy
and efficiency are essential.

At level 0, both objects to test are enclosed by tight spheres.
The test, whether two spheres intersect each other, is that
simple, that there is no need for simplification. However, at all
other levels of detail, the algorithm has to check two sphere
sections, which is analyzed in the list that follows.

1) So-called bounding volume tests enclose the objects to
test within geometrically simpler objects; for example,

a polygonal frustum might be used to enclose a sphere
section. Although the intersection test of two polygonal
frustums is rather simple, the amount of tests increases,
and the enclosing quality is rather bad.

2) A totally different approach to check for intersections
uses interval/affine arithmetics [30]. In theory, this ap-
proach offers an exact and fast intersection test. Although
such a test might exist, a practical test has not yet been
implemented.

3) The intersection test presented in [31] is based on al-
gebraic tests for intersection. This test is suitable for
our purposes, but due to its complexity and compu-
tational expense, we prefer a computationally cheaper
alternative.

The following geometrical test shows reasonable perfor-
mance. Checking two capped cones in 3-D is nontrivial. Subject
to the orientation of the cone axes, two cases are analyzed.
The first case deals with nonparallel axes, whereas the second
case deals with parallel lines. A heuristically chosen (angle)
threshold distinguishes between the nonparallel and parallel
cases.

In the nonparallel case for both axes, the shortest distance
and the corresponding perpendicular points P1 and P2 are
determined. The test itself considers cone sections. One cone
is intersected with a plane containing the first cone’s center and
the line through P1 and P2. This results in a well-known cone
section. The first cone is reduced to a line, which passes the
first cone’s center and the point that you get by translating P1

within the considered plane toward the cone section’s focus.
The intersection test is then reduced to a 2-D intersection test
between a cone section and a line.

In the parallel case, the algorithm analyzes the projection
of one cone onto the other cone’s axis and vice versa. For
each projection, two distance checks of points against their
according radii are performed, which results in a total of four
checks. The special case of parallel lines is separately handled
for optimization, as in this case the whole test can be done by
some interval checks, which are much faster.

Together with a quick rejection test (consider bounding cylin-
ders instead of cones) and a quick acceptance test (consider
spheres inside the cones) for the nonparallel case, the algorithm
is reasonably fast.

Collision Detection Comparison: To show the efficiency of
the new collision detection method, we have run a series of
benchmarks on a Windows PC with a Pentium M 1.6-GHz
processor. Realistically benchmarking collision detection algo-
rithms is a difficult task. This is because there is a wealth of
models with different characteristics and motions relative to
each other. In [32], a benchmarking scheme for two models
each contained in a unit box is proposed, where the second
object performs a number of full-z rotations (in 1000 frames)
at decreasing distances relative to the first object.

To compare this approach with well-known collision de-
tection methods, we have included timings using an 18-sided
discrete orientation polytope (18-DOP) [32] and oriented
bounding boxes as in the publicly available library RAPID [33].
These approaches also report all triangle pairs in collision.

FÜNFZIG et al.: TERRAIN AND MODEL QUERIES USING SCALAR REPRESENTATIONS 7

Fig. 7. Collision test for models Tree (4316 triangles) and Beetle (57 243 triangles). The line drawings show the axis of each capped cone of the discretized
models. The benchmark “Transform” reports all triangle pairs in collision without elimination of duplicates; “TransformSingleLayer” reports a single triangle pair
per layer of a colliding shell pair; and “TransformSingle” reports a single triangle pair in a colliding shell pair. For comparison, 18-DOP bounding volumes and
oriented bounding volumes (public library RAPID) are shown.

The Fig. 7 contains the collision test models: a tree model
colliding with a Beetle car model. This test demonstrates the
algorithm’s ability to handle all kinds of models. Absolutely
unstructured polygon soups, as used for the leaves within the
tree model, can be handled the same way like all other kinds
of representations without any problems. Furthermore, the tree
model is neither convex nor star shaped.

If reporting only a single triangle per spherical shell, the
timings do not very much vary. In this mode of collision
determination, the collision time is independent of the triangle
count. It only depends on the sampling density and the volume
between the inner and outer bounding shells.

V. CONCLUSION

We have presented a new collision detection algorithm,
which is suitable for all model types, e.g., polygon soups,
surfaces, and volumetric models. It is simple to implement, and
its storage scheme consumes half the space compared to the full
storage of the hierarchical spherical distance field.

The approach is scalable in the information it gives in colli-
sion determination. If it reports a single triangle per spherical
shell, then the collision time only depends on the sampling
density and the volume of spherical shells, which are used
as bounding volumes, but not on the primitives’ count of the
model. Due to this fact, it is possible to tightly estimate the time
bounds for the collision test. For bounding volume hierarchies,
the worst-case time bounds are not tight in general, as the
bounding volumes can arbitrarily overlap in space.

If we check all triangle pairs inside a spherical shell for
intersection, then the approach works well in situations with
few collisions, which are the most relevant in practice. In close-
proximity situations, the algorithm degenerates to comparing
triangle lists sorted according to the center distances of a
triangle point.

Furthermore, we have shown that LOS calculation and col-
lision detection can similarly be handled. Our wavelet-like
storage scheme can be used with both arbitrary collision de-
tection queries and LOS queries to create a more compact
representation in memory.

REFERENCES

[1] D. W. Fellner and N. Schenk, “MRT—A tool for simulations in 3D
geometric domains,” in Proc. ESM, Jun. 1997, pp. 185–188.

[2] A. Schmitz and M. Wenig, “The effect of the radio wave propagation
model in mobile ad hoc networks,” in Proc. 9th ACM Int. Symp. Model.,
Anal. Simul. Wireless Mobile Syst. (MSWiM), 2006, pp. 61–67.

[3] M. Allegretti, M. Colaneri, R. Notarpietro, M. Gabella, and G. Perona,
“Simulation in urban environment of a 3D ray tracing propagation mo-
del based on building database preprocessing,” in Proc. URSI Gen.
Assem., 2005. [Online]. Available: www.ursi.org/Proceedings/ProcGA05/
pdf/CP1.7(0958).pdf

[4] C. K. Yang, “Integration of volume visualization and compression: A
survey,” State Univ. New York, Stony Brook, NY, Tech. Rep. RPE-10,
Aug. 2000.

[5] M. Teschner, B. Heidelberger, M. Mueller, D. Pomeranets, and M. Gross,
“Optimized spatial hashing for collision detection of deformable objects,”
in Proc. Vis., Model., Vis., Nov. 2003, pp. 47–54.

[6] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517, Sep. 1975.

[7] S. F. Frisken, R. N. Perry, A. P. Rockwood, and T. R. Jones, “Adaptively
sampled distance fields: A general representation of shape for computer
graphics,” in Proc. SIGGRAPH, 2000, pp. 249–254.

[8] S. Lefebvre and H. Hoppe, “Compressed random-access trees for spatially
coherent data,” in Proc. EG Symp. Rendering, Aug. 2007, pp. 339–350.

[9] M. D. Proctor and W. J. Gerber, “Line-of-sight attributes for a gener-
alized application program interface,” JDMS, vol. 1, no. 1, pp. 43–57,
Apr. 2004.

[10] B. Salomon, N. Govindaraju, A. Sud, R. Gayle, M. Lin, D. Manocha,
B. Butler, M. Bauer, A. Rodriguez, L. Eifert, A. Rubel, and
M. Macedonia, “Accelerating line of sight computation using graphics
processing units,” in Proc. 24th Army Sci. Conf., 2005. ADA433414.
[Online]. Available: http://www.dtic.mil/cgi-bin/GetTRDoc?AD=
ADA433414&Location=U2&doc=GetTRDoc.pdf

[11] D. Tuft, B. Salomon, S. Hanlon, and D. Manocha, “Fast line-of-sight
computations in complex environments,” Univ. North Carolina, Chapel
Hill, NC, Tech. Rep. TR05-025, 2005.

8 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

[12] N. L. Max, “Horizon mapping: Shadows for bump-mapped surfaces,” Vis.
Comput., vol. 4, no. 2, pp. 109–117, Mar. 1988.

[13] H. Rushmeier, L. Balmelli, and F. Bernardini, “Horizon map capture,”
Comput. Graph. Forum, vol. 20, no. 3, pp. 85–94, Sep. 2001.

[14] J. A. Stewart, “Fast horizon computation at all points of a terrain with
visibility and shading applications,” IEEE Trans. Vis. Comput. Graph.,
vol. 4, no. 1, pp. 82–93, Jan. 1998.

[15] M. C. Lin and S. Gottschalk, “Collision detection between geome-
tric models: A survey,” in Proc. 8th IMA Conf. Math. Surfaces, 1998,
pp. 37–56.

[16] M. C. Lin and D. Manocha, “Collision and proximity queries,” in Hand-
book of Discrete and Computational Geometry. Boca Raton, FL: CRC
Press, 2003.

[17] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghupathi,
A. Fuhrmann, M.-P. Cani, F. Faure, N. Magnenat-Thalmann, W. Strasser,
and P. Volino, “Collision detection for deformable objects,” in Proc.
Eurographics, 2004, pp. 119–140. State-of-the-Art Report.

[18] W. A. McNeely, K. D. Puterbaugh, and J. J. Troy, “Six degrees-of-
freedom haptic rendering using voxel sampling,” in Proc. SIGGRAPH,
1999, pp. 401–408.

[19] A. Fuhrmann, G. Sobottka, and C. Groß, “Distance fields for rapid
collision detection in physically based modeling,” in Proc. GraphiCon,
Sep. 2003, pp. 58–65.

[20] S. Fisher and M. C. Lin, “Deformed distance fields for simulation of non-
penetrating flexible bodies,” in Proc. EG Workshop Comput. Animation
Simul., 2001, pp. 99–111.

[21] D. Kidner, M. Dorey, and D. Smith, “What’s the point? Interpola-
tion and extrapolation with a regular grid DEM,” in Proc. GeoCom-
putation, 1999. [Online]. Available: http://www.geovista.psu.edu/sites/
geocomp99/Gc99/082/gc_082.htm

[22] C. Christopoulos, A. Skodras, and T. Ebrahimi, “The JPEG2000 still
image coding: An overview,” IEEE Trans. Consum. Electron., vol. 46,
no. 4, pp. 1103–1127, Nov. 2000.

[23] E. J. Stollnitz, T. D. DeRose, and D. H. Salesin, “Wavelets for computer
graphics: A primer, Part 1,” IEEE Comput. Graph. Appl., vol. 15, no. 3,
pp. 76–84, May 1995.

[24] E. J. Stollnitz, T. D. DeRose, and D. H. Salesin, “Wavelets for computer
graphics: A primer, Part 2,” IEEE Comput. Graph. Appl., vol. 15, no. 4,
pp. 75–85, Jul. 1995.

[25] M. Akian, G. Cohen, S. Gaubert, R. Nikhoukhah, and J. P. Quadrat, “Lin-
ear systems in (max, +) algebra,” in Proc. 29th Conf. Decision Control,
Honolulu, HI, Dec. 1990, pp. 151–156.

[26] C. Fünfzig, T. Ullrich, D. W. Fellner, and E. N. Bachelder, “Empirical
comparison of data structures for line-of-sight computation,” in Proc.
IEEE Int. Symp. Intell. Signal Process. (WISP), 2007, vol. 1, pp. 291–296.

[27] C. Fünfzig, T. Ullrich, and D. W. Fellner, “Hierarchical spherical distance
fields for collision detection,” IEEE Comput. Graph. Appl., vol. 26, no. 1,
pp. 64–74, Jan./Feb. 2006.

[28] S. Valette and R. Prost, “Wavelet based multiresolution analysis of irreg-
ular surface meshes,” IEEE Trans. Vis. Comput. Graph., vol. 10, no. 2,
pp. 113–122, Mar./Apr. 2004.

[29] H. Hoppe, “Efficient implementation of progressive meshes,” Comput.
Graph., vol. 22, no. 1, pp. 27–36, Feb. 1998.

[30] K. Bühler, “Taylor models and affine arithmetics: Towards a more sophis-
ticated use of reliable methods in computer graphics,” in Proc. Spring
Conf. Comput. Graph., 2001, vol. 17, pp. 40–48.

[31] S. Krishnan, A. Pattekar, and M. C. Lin, “Spherical shell: A higher order
bounding volume for fast proximity queries,” in Proc. 3rd Workshop
Algorithmic Found. Robot., 1998, vol. 3, pp. 177–190.

[32] G. Zachmann, “Rapid collision detection by dynamically aligned DOP-
trees,” in Proc. Virtual Reality Annu. Int. Symp., 1998, pp. 90–97.

[33] S. Gottschalk, M. C. Lin, and D. Manocha, “OBB-tree: A hierarchical
structure for rapid interference detection,” in Proc. SIGGRAPH, 1996,
pp. 171–180.

Christoph Fünfzig received the M.Sc. degree from
the University Bonn, Bonn, Germany, and the Ph.D.
degree in computer science from Braunschweig Uni-
versity of Technology, Braunschweig, Germany.

He is currently with the CAGD Group, Univ.
Valenciennes et du Hainaut-Cambrésis, FR CNRS
2956, Valenciennes, France. His research interests
include practical computational geometry, anima-
tion and simulation in computer graphics, virtual/
augmented reality, and scientific visualization.

Torsten Ullrich received the M.Sc. degree in math-
ematics from Karlsruhe Institute of Technology,
Karlsruhe, Germany. He is currently working toward
the Ph.D. degree in computer science with Graz
University of Technology, Graz, Austria.

His research has been concerned with computer-
aided geometric design topics, including modeling
and reconstruction.

Dieter W. Fellner received the M.Sc. and Ph.D.
degrees from Graz University of Technology,
Graz, Austria.

He is the Director of the Fraunhofer Institute of
Computer Graphics (IGD), Darmstadt, Germany,
and a Professor of computer science with Darmstadt
University of Technology (TU Darmstadt),
Darmstadt, with a joint affiliation with Graz Uni-
versity of Technology. His research interests include
computer graphics, modeling, immersive systems,
and graphics in digital libraries. He has held

academic positions with universities in Graz, Austria; Denver, CO; St. John’s,
NF, Canada; Bonn, Germany; and Braunschweig, Germany.

Dr. Fellner is a member of the Association for Computing Machinery,
Eurographics, and Gesellschaft für Informatik (GI). He is on the Editorial
Board of several international journals, IEEE COMPUTER GRAPHICS AND

APPLICATIONS being one of them.

Edward N. Bachelder received the Ph.D. degree
from the Massachusetts Institute of Technology,
Cambridge.

Prior to receiving his Ph.D. degree, he was a Naval
Aviator flying the SH-60B. He is currently a Prin-
cipal Research engineer with Systems Technology
Inc., Hawthorne, CA. His areas of research include
augmented reality, optimized control guidance for
helicopter autorotation training and operation, real-
time path optimization, system identification (ex-
tremely low to very high frequency regimes) using

sparse excitation, 3-D helicopter cueing for precision hover, and nap-of-earth
flight.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

