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ABSTRACT

Improving the visual appearance of coarse triangle meshes is usu-
ally done with graphics hardware with per-pixel shading tech-
niques. Improving the appearance at silhouettes is inherently hard,
as shading has only a small influence there and the geometry must
be corrected. With the new geometry shader stage released with
DirectX 10, the functionality to generate new primitives from an
input primitive is available. Also the shader can access a restricted
primitive neighborhood. In this paper, we present a curved surface
patch that can deal with this restricted data available in the geome-
try shader. A surface patch is defined over a triangle with its vertex
normals and the three edge neighbor triangles. Compared to PN
triangles, which define a curved patch using just the triangle with
its vertex normals, our surface patch is G' continuous with its three
neighboring patches. The patch is obtained by blending two cu-
bic Bézier patches for each triangle edge. In this way, our surface
is especially suitable for efficient, high-quality tessellation on the
GPU.

We show the construction of the surface and how to add special
features such as creases. Thus, the appearance of the surface patch
can be fine-tuned easily. The surface patch is easy to integrate into
existing polygonal modeling and rendering environments. We give
some examples using Autodesk Maya®).

Keywords: PN triangles, Bézier surfaces, Geometry shader, GPU-
based tessellation

Index Terms: [.3.5 [Computing Methodologies]: Com-
puter Graphics—Surface Representation, Spline, [.3.1 [Computing
Methodologies]: Computer Graphics—Graphics Processors

1 INTRODUCTION

Graphics hardware is improving at a fast pace. In real-time ren-
dering the visual appearance of triangle models is augmented by
special per-pixel techniques using textures. With coarse triangle
models it is inherently difficult to improve the geometric appear-
ance at silhouettes. This is the case because shading has only a
small influence there, and the geometry must be refined efficiently.
Until recently, only the vertex shader was available to displace the
vertices. As the bandwidth between CPU and GPU is restricted, the
main problem is how to communicate the mesh and displacement
data efficiently to the GPU. In the geometry shader released with
the Direct3D 10 API, there is the possibility to generate new prim-
itives using a restricted input mesh. There is fixed-size neighbor-
hood information available consisting of the triangle and its three
edge neighbor triangles, see Figure 1, right. In this paper, our task
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is to construct a G continuous surface patch defined by exactly this
restricted input mesh. The resulting surface should be

e reasonable smooth,

e on edges the smoothness should be taggable so that special
features are available similar to creases on subdivision sur-
faces,

e a surface patch should be suitable and efficient for GPU ren-
dering with the new geometry shader stage.

To meet these requirements, we construct two cubic triangular
Bézier patches for each edge of a triangle. These two cubic tri-
angular Bézier patches generate a G! join across their edge. To
get the final G' surface, we blend the resulting triangular Bézier
patches together such that G! continuity is not destroyed. We start
with related work for this problem in Section 2. Section 3 describes
our construction of the PNGI1 surface. After a short overview of the
method, we summarize some results on cubic Bézier triangles and
their G' continuity (Section 3.1). Then we apply a G' construction
on each side of the triangle. Section 3.2 contains also the deriva-
tion of the blending functions and the overall surface evaluation.
For improved surface lighting, Section 3.3 contains two options to
get normals: original normals derived from the PNGI patches and
modified normals by interpolation. Special features are presented
in Section 3.4. The properties and applications (Section 3.5) of
PNGI1 surfaces on GPUs are explained afterwards. We show visual
results using Autodesk Maya®) and give additional details on the
implementation (Section 4). Finally, we close with conclusions and
possible further work (Section 5).

2 RELATED WORK

For modeling of curved surfaces there exists a zoo of different sur-
face types. Parametric surfaces such as Bézier and B-Spline sur-
faces are defined by a control mesh [7]. Also surfaces resulting

Figure 1: On the left, the required neighborhood (light gray) for
the tessellation of the gray marked face using the Loop subdivi-
sion scheme. On the right, the neighborhood (light gray) of the gray
marked face on the GPU (GL_-TRIANGLES_ADJACENCY _EXT).

from subdivision of a base mesh are available. For a prominent
example, the Loop subdivision surface [14] works with a triangle
base mesh and generates an approximating, C2 continuous surface
except at the irregular points where it is only C'. For a refine-
ment step, the complete 1-neighborhood of a triangle is required as
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shown in Figure 1, left. We define the restricted neighborhood as
the light gray triangles with its vertex normals in Figure 1, right.

The problem of mesh refinement consists of two sub-problems.
Firstly, the defining data for a surface patch has to be transferred to
the computation unit. Secondly, it remains to tessellate the surface
patch at a sufficient resolution to show all the surface details. In
principle, this can be done with a fixed tessellation or with adaptive
patterns resulting from vertex depth tags. The process of mesh re-
finement has been covered by Adaptive Refinement Patterns (ARP)
in general [2], and has been specially solved for NURBS and their
complex trimming [10]. These approaches choose a sufficiently fine
tessellation (already stored on the GPU) and displace it within the
vertex shader stage. Some adaptivity is achieved by precomputing
all possible fitting tessellations corresponding to the resolutions at
the edges.

Defining Patch Data

As mechanisms to transfer data to the GPU, vertex attributes and
recently also uniform buffer objects are available. These can be
combined to transfer all defining data for a surface patch. GPGPU
techniques for encoding the mesh connectivity and mesh geome-
try into textures [21, 4] have been proposed to make larger neigh-
borhoods available in the vertex and fragment shader stages of the
GPU. The variety of schemes possible in this way is very broad but
the resulting algorithms are inherently multi-pass and still require
considerable preparation on the CPU after changes of the mesh con-
nectivity. For subdivision surfaces (Loop, Butterfly), an approxi-
mation of a limit triangle by a quadratic surface patch interpolating
in the triangle corner and mid-edge vertices, has been proposed in
[3]. After one subdivision step on the CPU into four limit triangles
using the 1-neighborhood, the 1-neighborhood is no longer neces-
sary to do the local approximation by quadratic surface patches in
a PN-like fashion [22]. Again there is a complex CPU prepara-
tion process involved. Unfortunately, this quadratic approximation
destroys the C! continuity of the subdivision surface. A similar ap-
proach was proposed for the adaptive tessellation of Catmull-Clark
surfaces [15]. The Catmull-Clark surface is approximated by bicu-
bic surface patches defined by 16 control points. In this way, it
can be evaluated on current GPUs. A variable-size hardware ver-
tex cache has been proposed in [13] to make the 1-neighborhood
available in future GPU designs.

Tessellation

Besides using precomputed tessellation patterns in a patch-by-patch
rendering, the geometry shader released with the Direct3D 10 API
[1] can generate new triangles or triangle-strip primitives and, even
more important, offers new primitives for patch definition. The
complete neighborhood of a triangle is also not available but the
edge triangle neighbors can be accessed inside a new primitive con-
sisting of six vertices (Figure 1). In [2], the current restriction to
generate not more than 1024 varying floats is pointed out. With
vertex coordinates and vertex color/vertex normal there are 8 floats
per vertex so that 126 triangles can be emitted in one triangle strip.
It is worthwhile to note that the new input primitives can be batched
efficiently, i.e., large batches of these primitives can be issued in one
API call. This is a considerable improvement over a patch-by-patch
setup each time a surface patch is rendered.

Parametric surfaces like curved PN triangles [22] can deal with
the restricted neighborhood information. A PN triangle is gener-
ated by a single triangle and its vertex normals. The construction
uses a cubic Bézier patch that is only C° in general. To give the
impression of a smooth surface, the normals are computed sepa-
rately from the surface via a smart normal interpolation method.
Figure 2 shows an example of PN triangles. Because PN triangles
are simple to evaluate, they found their way into graphics hard-
ware (TruForm rendering) [9]. Mann and Davidchuk presented a
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Figure 2: Comparison PNG1 (a) and PN (b). The C° continuity of
the PN patch is clearly visible at the silhouette. The PNG1 patches
present a G! surface with a smooth silhouette.

more sophisticated construction in [6, 17] that has G! continuity
and uses only the restricted neighborhood. They generate a hybrid
Bézier patch that blends the interior as well as the boundary con-
trol points. The construction makes use of a planar scattered data
interpolation scheme proposed in [8]. Unfortunately, they do not
offer special features for their surface type. Our surface patch is
similar in spirit but our construction only uses a sufficient condition
for cubic Bézier triangles to be C! continuous across an edge. By
controlled violation of this condition, we can easily create special
features like sharp edges.

In [16], parametric surface interpolation is surveyed, and the
paper compares local and global methods. From the local meth-
ods, the one by Shirman and Sequin [20] constructs three quar-
tic triangular Bézier surfaces per patch similarly to the method of
Chiyokura and Kimura [5]. Further on, they present Nielson’s side
vertex method [18] with rational blending of three cubic triangular
Bézier surfaces. They state that with global methods the remaining
free parameters can be chosen much better compared to the heuris-
tic choices in the local methods. For our application though, global
methods are not an option due to their preparation requirements.
Later, Hahmann and Bonneau [11] presented an interesting local
method using the 4-split instead of the Clough-Tocher-split in the
previous methods. They define four quintic patches leaving three
free Bézier control points. Unfortunately, the use of the complete
1-neighboorhood and the computation of 63 control points makes
this nice method unsuitable for the GPU.

3 PNG1 TRIANGLE PATCHES

In general, it is nof possible to build a G' join between two neigh-
boring cubic Bézier triangles if only the middle control point of
both Bézier patches is variable. This is also the case if the control
points adjacent to the corner points share the same tangent plane
(see [19] for more details and an example). Therefore, we construct
for each edge of the triangle, a surface based on two cubic Bézier
patches that has the G! join to its edge-neighbor. The resulting three
surfaces from the three sides are blended together conveniently to
maintain the G! property on all three boundaries. That way, we
obtain a kind of a cubic Bézier patch whereby its control points are
replaced by control functions. Similar to the method in [22], to alle-
viate the effect of the curvature discontinuity that is not eliminated
by a G! surface, we smooth the normals via a quadratic interpola-
tion. The resulting surface looks smoother and gives us the desired
appearance. To enhance the variety of modeling options, special
features are used. Special features reduce the continuity locally on
the surface to allow for, e.g., sharp edges. They were introduced for
subdivision surfaces firstly but they are also available for PNGI1.

3.1 Cubic Bézier Triangles
A Bézier triangle is defined by
! .
Y L uivinkb (1)
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where b; i are the control points of the Bézier triangle and w =
1—u—v[7]. For n =3 we get a cubic Bézier triangle (see Figure 3,
left, and Appendix A). The normals of the surface can be computed
by

N(u,v,w) = DgB(u,v,w) x DyB(u,v,w) )
where
ii=[1,0,—1]
v=10,1,-1]

We obtain a C! join between two adjacent Bézier triangles, if the
quadrangles Up;q;rigi+1, where i = 0,...,n— 1, are coplanar and
all quadrangles are similar [7] (see Figure 3). We will use this con-
dition for the construction of our PNG1 patch to ensure a C! join
to its adjacent triangles. In this way, we achieve a surface that is at
least G! everywhere.

[ ] °
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Figure 3: Left: Control points of a cubic Bézier patch. Right: C! join
of two cubic Bézier patches.

3.2 Construction of a PNG1 Triangle Patch

We use the notation described in Figure 4 and start with building
the surface corresponding to the edge P;P>. The surfaces for the
edges P, P; and P3P| can be generated similarly.

5

Figure 4: Notation for the input mesh for a PNG1 patch (left) and the
resulting shape (gray marked, right). The parameter space and the
barycentric coordinates are illustrated in the middle.

Consider the tangent plane of P; defined by the point P; and its
normal 1_\71 (see Figure 5). We project the points P, P3, and Py, in
the direction of N into the tangent plane of P;. To preserve the edge
length in the projection, we scale the vector proj(P;) — P; until it has
the same length as P, — P; for i = 2,3,12. The result of this projec-
tion and scaling are two adjacent triangles in the tangent plane as
illustrated in Figure 5, right. Subdivision of these two triangles by
factor 1/3 provides for each triangle the three red colored similar
subtriangles. They form three similar quadrangles that are copla-
nar. The same procedure can be done with the tangent plane of P»
defined by point P, and its normal sz Py, Pj, and P3 are projected
into the tangent plane of P> and a scaling is done to maintain the

original edge length. The subdivision of the two projected triangles
in the tangent plane of P, results also in three similar quadrangles.

For the construction of the PNGI1 patch (see Figure 6, top)
we need the triangle adjacent to P in the tangent plane of P
(AP1bp1210bp1:201, red marked) and also the triangle adjacent to
P, in the tangent plane of P> (Abpy.120P2bp2:021, blue marked). An
affine transformation of the red triangle from tangent plane P; into
the tangent plane of P, provides the point bpy.o21 (see Figure 6, bot-
tom). In an analogous manner, point bpy.50; is computed by trans-
ferring the blue triangle from tangent plane P, into tangent plane
Py.

For the middle control points, we generate a plane defined by

€1 = bp2:120 — bp1:210 3)
& = (N7 +Nrin) x & “
Nip=¢é x& Q)

where ]_\7T is the normal of the triangle plane Pj, P>, P3, and 1_\77]2
denotes the normal of Py, Pjp, P> (see Figure 7). A transfer of the
red triangle from the tangent plane of P, and a transfer of the blue
triangle from the tangent plane of P, provides the points b12.p1:111
and byy.pp.111- Constructed in this way, the resulting red and blue
triangles respectively are similar to each other. With the same pro-
cedure for the adjacent triangle AP, PP, we get coplanar similar
quadrangles which results in the G! property.

Applying the described construction also to the edges P,P3 and
PPy, provides the points as illustrated in Figure 8, top. The red
control points were created via the tangent plane of P, the blue
ones are constructed using the tangent plane of P, and the green
control points are generated by the tangent plane of P;. Now we
map the calculated control points to a control function (see Figure
8, bottom). The indexing of the control point bp;.; i results from its
creation by tangent plane of P, / = 1,2,3 and its correspondence to
control function ijk, where ijk is the standard indexing for Bézier
triangles. We use control functions instead of control points to get
the form of a cubic Bézier patch:

S(u,v,w) =

E oy - u'vlw bi 'k(M,V,W) (6)
i /
i+ j+k=

where b300 (1, v, w) = 300, bo3o (1, v,w) = bozo, and boo3 (u, v, w) =
boos are the triangle vertices. The control functions b;j (u,v,w)
blend the assigned control points and deliver for each parameter
(u,v,w) a suitable control point.

To specify the blending functions b; i (u,v,w) we look at the side

PP, firstly. To get a G' join across P; P, the following conditions
are sufficient on the border curve v = 0:

1. On the border curve, we are required to use only the control
point constructed from this edge
b210(u, v, w) [y=0= bp1:210 and b12o(u,v,w) [v=0= br2:120

2. Likewise, the derivatives of byjo(u,v,w) and byiog(u,v,w)
should be zero on this edge:
Dﬁbz]O(M,V,W) v=0= 0’ DvaIO(”MW) |V
Dib1ao(u,v,w) [y=0=0,  Dybioo(u,v,w) |,

—0=0
—0=0

3. For the remaining control points affecting the continuity
on this side, we need to blend between bpi.o01 and bpr.201,
bp1.o21 and bpy.21, b12:p1:111 and byp.po:q1y for u from O to
1, w from 1 to 0.
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Property 1 and 3 follow directly from the construction of these
points. Property 2 results from the surface derivatives on the side
v =0. See Appendix B for the surface derivatives D;S(u,v,w),
DyS(u,v,w) in terms of the derivatives of the control point func-
tions. Analoguous conditions apply to the edges P,P; and P3P, .

Tangent Plane of P

@, P|2

Figure 5: Left: Normal projection of P,, Ps, Pj; onto the tangent plane
of P;. The length of the vectors proj(P,) — Py, proj(P;) — P, proj(Pi2) —
P, is scaled to equal the original length P, — P, P; — Py, P;» — P;. Right:
A subdivision of the two projected triangles by factor 1/3 provides for
each triangle the three red colored similar subtriangles.

bp1:201

Tangent Plane of P, Tangent Plane of P,

bp1:201
: briio

23

b300

Figure 6: Affine transformation of the two red triangles from tangent
plane P; into the tangent plane of P,. Likewise, make an affine trans-
formation of the two blue triangles from tangent plane P, into the tan-
gent plane of P;. The resulting red and blue quadrangles respectively
are coplanar and similar.

Figure 7: Construction of the middle plane by the two adjacent trian-
gle normals and bpa:120 — bpi:210- The red and blue triangles from the
tangent planes of P and P, are transferred into the middle plane to

compute the points biz.pi:111, b12:p2:111-
edge P, P;:

boo3
P

edge P3P;:
boos

=P
bp3o12 bp3:120
bp3:102 bpro12 bp2:102
barpzin bas:p3iini
bp1:201 barprin bazpa:in1
bp3210 bp3:120
bp1:210 5. b
b300 edge P P>: boso
=P bpaaor  bizp2iil bpaoai =P,

bp1:201 b2 bpy

b300 bpi2io bra2o  bozo
—P —P

Grouping of the control points:

by (u, v, w) bo3o

b30o ba1o(u, v, w)

Figure 8: Top: Construction of a G' patch for each side provides the
points illustrated. Bottom: These points are schematically grouped
together. A control function blends the points.
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We designed the blending functions to fulfill all the properties
1-3 for all edges of the triangle:

1
boor (u,v,w) = P <(1 —u)*bp1:201 +M2bP2;201)

! 2 2
bioz(u,v,w) = m <(1 —u)bp3:102 +u bP2:102>
bor2(u,v,w) = ) ( w)2bp3.012 + W bp. 012)
boai (u,v,w) = w2+ e w)*bpy:021 + W hpi. 021)

! 2 2
bioo(u,v,w) = g~ ((1 —=v)"bpai2o+v bP3:120>

1 2 2
byio(u,v,w) = o g ((1 —Vv)"bpi2io+v bP3:210>

The inner function b1 (u,v,w) must deal with six control points,
two from each side, so Nielson’s blending function [18] occurs also
in our blending function for the inner control point:

b1 (u,v,w) =
uw ((1*M)Wbu:m:m+M(1*W)b12:P2:111>+
uv + uw +vw w—+u—2uw
uy ((1*")”523:}’2;111 +(17u)vb23;p3;m)+

uv + uw +vw u+v—"2uy
vw ((I—W)Vb31;P3:111+(1—V)Wb31;P1;111>
uv+uw +vw w+v—2vw

3.3 PNG1 Normals

The normals of our surface can be computed directly (see also Ap-
pendix B) by

N(u,v,w) = DgS(u,v,w) x DgS(u,v,w) (7)
However, we deal with a G! surface and therefore, it happens that
we do not get the desired smooth appearance, visible especially in
reflections. Thus, for a kind of normal smoothing, we use a method
similar to the one presented in [22] by Vlachos et al.

We get the smoothed normals via a quadratic Bézier triangle
patch

=’ ngpo + v noon + wnago+

2wu ny1o + 2uv nop1 +2wv nygg
where (see Figure 4 for notation) ngo = N» = N(1,0,0), ngg =
=N(0,1,0), nap = N = N(0,0,1), and

1 1 1
N(=,0,~)— ~(N
nip = N(2 0, 2) 2( | +MN,)
1 -
n011—2N(§ 5 ,0) — E(N2+N3)
o+ 5 w1
nior = 505) =3 N3+

In this way, we obtain the original surface normals in the middle of
the boundary curves as well as on the corners. With these normals,
the surface appearance gives us the impression that it is smoother
because curvature discontinuities are alleviated.

3.4 Special Features for PNG1 Triangle Patch

In addition to smooth surfaces, sharp edges are desired for advanced
modeling applications. Loop and Catmull Clark subdivision sur-
faces offer nice kinds of special features (e.g., [12]) which should
also be available for our PNG1 surface similarly.

From a user’s point of view, sharp edges are obtained by setting
sharpness values xk on designated edges of the base mesh. To gener-
ate a sharp edge with PNG1 patches, we use the same construction
process as described in Section 3.2 with a minor change: If we have
a sharp edge, e.g., on the side PP, the regular computation of &,
(see Equation 4) is substituted by

52 :NTXEI

To emphasize the sharp edge, the points bpr.oo1, b12:p1:1115
b12:p2:111»> bp1:021 can be moved by kNr. Models with special fea-
tures are presented in Figures 10 and 12, right.

3.5 Properties and Applications for PNG1 Patches

From the construction of the PNGI1 patch, it follows that the sur-
face is at least G' at the border and G2 in the interior of the patch.
The surface patches are reasonably smooth even when a silhouette
is observed, which is an additional advantage over PN triangles.
Special features as known from Loop subdivision surfaces can be
implemented for PNG1 patches. The appearance of the sharp edges
for PNGI differ from the ones of Loop because we deal with an
interpolating method instead of an approximating one.

The G surface above has been designed for the restricted neigh-
borhood directly available, for example, in the geometry shader
stage of modern GPUs. The application only needs to keep track
of the edge neighbors on triangles, which is of constant size per
triangle and can be maintained easily. This enables vertex attribute
and index data to be processed in large batches similar to standard
triangle models. The geometry shader can then carry out the eval-
uation of the parametric surface with formulas given in Appendix
A. Using a uniform tessellation, we step through the barycentric
parameter domain in rows of constant w and generate a triangle
strip per row. Each emitted vertex can have a lighted color com-
puted in the geometry shader or a normal for per-pixel lighting in
the fragment shader. In each case, this requires 8 float varyings per
vertex. Using [ points per triangle side, this requires / triangle strips
of lengths (2/+1),...,3, defining (2/ —1),...,3,1 triangles. So a
vertex sequence of length (2/+1)+...+3 = (I+ 1)+ =1>+2I
defines (20 — 1) +...+3+ 1= (I+ 1) — = [? trianges.

4 RESULTS

We have implemented the PNG1 patches as a MPxHwShaderNode
within Autodesk Maya(®). The Polygons part of Autodesk Maya®)
is a classic polygonal modeller, and lots of low-level and high-level
functions are available for surface creation. Without sharpness tags
for creases, the PNG1 triangles are defined by ordinary triangle
models so that it is not necessary to touch the underlying database.
Even sharpness tags can be integrated easily, either directly by a
new vertex-face attribute or by using a component of the vertex-
face color.

For assessing the surface shape, we rendered some simple poly-
hedral shapes with Phong shading in comparison to the PN patches.
Figure 9 and Figure 11 (left) show the PNG1 and the PN surface,
Figure 9 presents also the triangle model with its normals. The PN
patches usually look good in the inside due to surface lighting gen-
erated by a smooth normal field but at the silhouettes, kinks caused
by the C? continuous surface are clearly visible and cannot be cov-
ered up with normal interpolation.

We have used the interpolated normals described in Section 3.3.
They can largely improve the surface lighting in comparison to the
original normals, so that the G! continuous surface gets lighted with



To appear in proceedings of Graphics Interface 2008.

A OO

Figure 9: Cone of valence 6 from above. Triangle model with symmetrical normals (left), PNG1 patches (middle) and PN patches (right).

Q0

Figure 10: Smooth tetrahedron and tetrahedron with special features. Triangle model with centroid normals (left), PNG1 patches (middle), and
PNG1 patches with creased bottom triangle of sharpness value x = —0.1 (right).

an enhanced smooth normal field, which interpolates the exact nor-
mals at the triangle corners and edge mid-points.

On the tetrahedron (Figure 10) and the spaceship model (Figure
12, right), we show the effect of sharp edges on the elsewhere G'
continuous surface.

More complex models are presented in Figure 11. The head
model was previously used in the paper on PN triangles [22]. It
can be seen that the shape of the PNGI patches is more curved and
smoother especially at the silhouettes. The appearance away from
silhouettes is good with both due to the interpolated normals.

Figure 13 shows the Loop surface on a bunny base mesh in
comparison to the PNG1 surface. For the PNGI surface, we used
the base mesh of same topology but with points/normals computed
by Loop limit rules. Using these normals, both schemes generate
nearly the same shape. Small differences occur in the ear and eye
regions. Using normals averaged from the incident face normals,
shows some more differences, especially at the ear and the tail.

We want to report on the performance of the uniform tessellation
in a geometry shader writing out the vertex and normal coordinates
as vertex attributes required for per-pixel lighting. The uniform
tessellation can generate 100 triangles with a vertex sequence of
length /2 421 = 120 < 1024/8 = 128 in [ = 10 triangle strips per
patch. This bound results from 1024 varying floats available on a
NVidia Geforce G8800 GTX used by 8 varying floats per vertex.
With this resolution, we achieve the following framerates for the
PN head model (200 triangles): 214 frames per second (fps) using

the PN shader, and 93 fps using the PNG1 shader. With depth [ =
9, we achieve 258 fps using the PN shader, 112.5 fps using the
PNGI shader and with depth [ = 8, 316.5 fps using the PN shader,
138.5 fps using the PNG1 shader. For a model of typical size 1084
triangles, we observe 42 fps using the PN shader, and 14 fps using
the PNGI1 shader. With depth [ =9, we achieve 50 fps using the PN
shader, 16.5 fps using the PNG1 shader and with depth / = 8, 61.8
fps using the PN shader, 20 fps using the PNGI shader. Note that
OpenGL vertex arrays were used for issueing the vertex and index
data in these benchmarks.

5 CONCLUSION AND FURTHER WORK

In this paper, we 1present an enhancement of PN patches by gen-
erating at least G' continuous surfaces from triangle models and
their normals, called PNGI patches. PNG1 patches are based on
cubic Bézier triangles and use rational blending functions. This
new curved surface significantly improves the appearance of sil-
houettes on shaded surface tessellations. Compared to subdivision
surfaces like Loop surfaces, the new surface just uses the triangle’s
edge neighbors in its construction, which is of constant size, six
points and six normals. In terms of surface quality such a scheme
is inferior to the Loop scheme but generates nice G' surfaces. The
appearance of shading can be further and separately improved by
normal interpolation of the corner and mid-edge normals.

The PNG1 patches are suitable for direct rendering in the geom-
etry shader stage of modern GPUs and its restricted triangle neigh-
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(a) (b)

Figure 11: Comparison PNG1 (a), PN (b) for the head model (200 triangles), originally used in the PN paper [22]. Further PNG1 example of a

Dove model (832 triangles).

124 154

Figure 12: PNG1 Examples. Spaceship model (460 triangles, left), PNG1 model (middle), and PNG1 model with creases of value k = —0.2

(right).

566

Figure 13: Loop surface on bunny mesh (910 triangles, left), PNG1 surface on base mesh of same topology and Loop limit points/normals
(middle), and with Loop limit points but normals computed by averaging incident face normals (right).

borhood available with GL_TRIANGLES_ADJACENCY_EXT.
They do not require any precomputation step on the CPU and are
easy to implement. The geometry shader with drivers for current
hardware is restricted to 1024 varying floats. We expect that this
will improve with upcoming drivers and the next hardware update
cycle. For fine tessellations, it is also possible to use the tessel-
lation approach proposed in [2] using vertex buffer objects with
predefined tessellation patterns and surface evaluation in the vertex
shader.

As further work, we want to allow arbitrary sharp edges inde-

pendent of the input mesh. This makes feature creation with PNG1
triangles even more flexible as the triangle mesh does not need to
be changed.
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A POINT AND DERIVATIVE EVALUATION FOR CUBIC BEZIER
TRIANGLES
B(u,v,w) = wWboso + v boos + wbo + 3uPwhiag+
3u2vb021 + 3v2Wb102 + 3v2ub012+
3w2ub210 + 3w2vb201 + 6wuvbiq
D;B(u,v,w) = 3ulbgsg — 3wibsgo + (6uw — 3u2)b12()+
6uvboy; — 3v*byon + 32 bo1a+
(3W2 — 6WM)b210 — 6wvbyo1+
(6wv — 6uv)by;
DyB(u,v,w) = 3v2b003 — 3W2b3()0 — 3u2b120+
3u2b021 + (6vw — 3v2)b102 + 6vubg;
— 6wuby o+ (3W2 — 6WV)b201 +
(6Wu - 6uv)b111
B POINT AND DERIVATIVE EVALUATION FOR PNG1
PATCHES
S(u,v,w) =

103 b3 (i, v, w) + 2 boo3 (14, v, w) -+ wb3go (i, v, w) +

3uwh 20 (1, v, w) + 3uPvboo1 (1, v, w) + 3v whyop (1, v, w) +

3v2ubgr (e, v, w) + 3wPub o (1, v, w) + 3w vbag1 (i, v, w) +

6wuvby11 (u,v,w)

DzS(u,v,w) =

—3 b3oow? + 3bozou® + 3 (Dibayo (u, v, w)) wu
—6ba10 (1t, v, w) it + 3b 10 (1, v, w) w?
+3 (Dyb12g (1, v, w)) wi® — 3by2g (v, w) 1
+6b120 (u,v,w)wu+ 3 (Dzbaoy (u,v,w)) wly
wv+ 3 (Dgboa1 (i, v, w)) uv
uv+ 3 (Dib1oz (u,v,w)

—6by01 (v, w)
) w
)2 43 (Dybora (u,v,w)
)
)

w
+6bgo1 (u,v,w

( w2
—3bi02 ( .

(

(

)

u,v, Yuv
V2 +6(Dib111 (u,v,w)) wuy
uv+6by11 (u,v,w)wv

—6b11]

w
u,v,w
u,v,w

D;S(u,v,w) =
—3b300w” + 3boosv” + 3 (Dybaio (1, v, w)) wiu
—6b)10 (1, v,w) wi+ 3 (Dyby2g (u, v, w) ) wiu®
—3b120 (u, v, w) u® +3 (Dybaoy (u,v,w)) w?v
—6by01 (u,v,w)wv+3byo; (u,v,w) w2
+3 (Dyboa1 (1, v,w)) Py +3boay (u, v, w) u?
+3 (Dsbioa (u, v, w)) wv? —3b10a (1, v, w) v
+6b102 (1, v,w) wv + 3 (Dybo1a (i, v, w)) uv?
+6bg12 (u,v,w)uv+6 (Dsby11 (u,v,w)) wuy
—6b111 (u,v,w)uv+6b111 (u, v,w) wu
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