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ABSTRACT

Ein Szenengraph für denselben Szenengraphinhalt
kann auf mehrere Arten strukturiert sein, abhängig
von der Anwendung. In diesem Artikel wird die Biblio-
thek GENVIS für räumliche Strukturierungen auf dem
Szenengraph OpenSG mit einigen Anwendungen vor-
gestellt. Bei der Organisation von GENVIS spielt die
flexible und effiziente Anbindung an OpenSG eine
wichtige Rolle. Beispielhaft werden die Strukturierung
mit k-DOP Hüllkörpern und die reguläre Raumunter-
teilung vorgestellt. Insbesondere erstere kann zur
Kollisionserkennung und zur Umstrukturierung des
Szenengraph verwendet werden.

Schlüsselworte: Szenengraph, OpenSG, Räumliche
Strukturierung, Hüllkörper Hierarchie, Reguläres Git-
ter, Culling, Collision Detection

Einleitung

Der Szenengraph hat sich für die schnelle Anzeige
von allgemeinen Szeneninhalten durchgesetzt. Der
Szeneninhalt liegt dabei als gerichteter azyklischer
Graph (DAG)1 vor, wobei die inneren Knoten An-
zeigeattribute (Transformationen, Materialien, Umge-
bungseinflüsse wie Licht, Nebel usw.) verändern und
die Blattknoten erst geometrische Primitive enthal-
ten [Blythe et al., 2000]. Der Vorteil der DAG-Struktur
liegt darin, daß auf einfache Weise das Anzeigever-

1Im Szenengraph OpenSG ist ein Knoten aufgeteilt in zwei Tei-
le Node und NodeCore. Die Node-Objekte bilden einen Baum
von beliebigem Grad. Jedes Node-Objekt verweist auf ein Node-
Core-Objekt, das den Knotentyp festlegt. Die Node-Objekte ste-
hen also in einer n-zu-1 Beziehung zu den NodeCore-Objekten.
Von den NodeCore-Objekten aus betrachtet, liegt also eine DAG-
Struktur vor.

halten definiert werden kann. Im allgemeinen verer-
ben innere Knoten ihre Attribute auf den Teilbaum un-
terhalb.

Dieses einfache Vererbungsverhalten bringt es je-
doch mit sich, daß nicht alle Sortierungen effizient
realisierbar sind. Für statische Szeneninhalte mit vie-
len verschiedenen Materialien kann es zum Beispiel
sinnvoll sein nach Materialien zu sortieren und die
geometrische Primitive mit gleichem Material zusam-
menzufassen. Für dynamische Szeneninhalte ist da-
gegen eine logische Struktur mit Transformationen
über den sich bewegenden Szenenteilen notwendig.
Für ein effizientes Culling von statischen Szenen muß
eine hinreichend feine räumliche Strukturierung im
Szenengraph vorliegen.

In den meisten Fällen wird der Szeneninhalt aus ei-
ner Szenendatei eingelesen, in der überhaupt keine
oder keine geeignete Strukturierung vorliegt. Ein Bei-
spiel zeigt Abbildung 1.

In diesem Artikel wird die Bibliothek GENVIS
vorgestellt, die für solche Fälle räumlich/logische
Strukturierungen auf dem Szenengraph OpenSG
[Reiners et al., 2000] zur Verfügung stellt. Dabei ist
die Verbindung der beiden Strukturen effizient und fle-
xibel über einen Cache realisiert. Die Darstellung in
diesem Artikel beschränkt sich auf die Strukturierung
mit k-DOP Hüllkörpern und die reguläre Raumunter-
teilung.

Anbindung an den Szenengraph
OpenSG

Wie in der Einleitung dargestellt, wird die Szenen-
graphstruktur von mehreren Faktoren beeinflußt. Um
vielfältigste geometrische Anfragen effizient behan-
deln zu können, werden geeignete Datenstrukturen
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Abbildung 1: Beispiel für einen grob, logisch struk-
turierten Szenengraph, der sich aber aufgrund feh-
lender räumlicher Strukturierung schlecht zum Culling
eignet.

in einer separaten Bibliothek GENVIS implementiert
(Abbildung 2).

Die Datenstrukturen müssen einmal aus dem Sze-
nengraph OpenSG aufgebaut und anschließend zu
diesem konsistent gehalten werden (Weg OpenSG
zu GENVIS). Als Brücke dazwischen fungiert der
OpenSGCache, der einmal aus dem Szenengraph
abgeleitet wird (GenvisPreprocAction). GENVIS be-
nutzt anschließend den OpenSGCache.

Für Anfragestellung und Anfragereaktion muß es
die Möglichkeit geben, das Szenengraph-Objekt
zum Anfrageergebnis zu finden (Weg GENVIS zu
OpenSG).
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Abbildung 2: Beziehungen von OpenSG und GENVIS
über den OpenSGCache.
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Abbildung 4: Histogramm der Testsequenzlängen für
einen Cache mit 277 Datensätzen (insgesamt Platz
für 512 Datensätze). Die Statistik wurde über 250 Bil-
der des Frankfurt-Modells gewonnen.

OpenSG zu GENVIS

Der für geometrische Anfragen relevante Inhalt des
Szenengraphen (im wesentlichen Transform und ab-
geleitete NodeCore, Geometry) wird zur Konstrukti-
on von Adapterobjekten benutzt. Diese werden im
OpenSGCache gesammelt.

Der Cache erlaubt es zu einem Szenengraph-
knoten (identifiziert durch einen NodePtr ) in Zeit
O(1) den zugehörigen Datensatz zu finden. Da-
zu wird eine Hashtabelle mit doppeltem Hashing
(h1 (node) = int(node),h2(node) = 2h1(node) + 1)
eingesetzt. Wie in Abbildung 4 zu sehen, werden für
den Zugriff auf einen Datensatz höchstens 2 Tabellen-
zugriffe benötigt.

Der Cache-Datensatz zum Knoten *node umfaßt
die Welt-Matrix, die Menge der Kindknoten und eine
Liste der Adapterobjekte

class OpenSGCacheData<CONTAINER>
OSG::NodePtr node;
CONTAINER children;

// = node->getMFChildren()
OSG::Matrix matrix;

// = node->getToWorld()
stl::vector<Adapter*> adapter;

Das Argument CONTAINER bezeichnet dabei eine
Containerklasse, die zur Speicherung der Menge der
Kindknoten verwendet wird. Im einfachsten Fall kann
hier ein Vektor verwendet werden. Für die Sortierung
zum Beispiel nach dem Kameraabstand bietet sich ei-
ne Prioritätsliste (map) an [Staneker, 2001]. Die erfor-
derlichen Aktualisierungen der Container werden mit
der Methode void sort (const SORTFUNCTOR& s) im



Abbildung 3: Abarbeitung der Kindknoten bis zum Abstand 45.

OpenSGCache durchgeführt, wobei s einen zur Con-
tainerklasse passenden Sortfunktor bezeichnet. We-
gen der Lokalität des OpenSGCaches kann der Sort-
funktor sehr effizient auf alle Container in den Daten-
sätzen angewendet werden. Dies gilt insbesondere
bei Verwendung von Vektor als Containerklasse.

In einer Draw-Aktion DepthSortedDrawAction, die
auf den Cache zugreift, ist dann ein nach dem Kame-
raabstand sortiertes Abarbeiten der Kindknoten mög-
lich. Für jeden Frame wird zunächst die Aktualisie-
rung des gesamten Caches mit sort durchgeführt. In
der Rekursion über alle Szenengraphknoten können
dann die Kindknoten jeweils sortiert weiterverarbeitet
(also dem Viewfrustum-Test, Occlusion-Test unterzo-
gen) werden. Abbildung 3 zeigt eine Bildsequenz, bei
der die Abarbeitung der Container bei einem festge-
legten Maximalabstand abgebrochen wird.

GENVIS zu OpenSG

Generell gibt es in GENVIS eine Adapterklasse für
einen Geometry-Knoten und für eine einzelne Face
(Dreieck, Viereck) innerhalb eines Geometry-Knotens

class GeometryAdapter<BasicTraits,..>
typedef ... TransformType;
typedef ... GeomObjType;

GeometryAdapter (const GeomObjectType&);
GeometryAdapter (const TransformType&,

const GeomObjectType&);

GeomObjectType getOriginal () const;

// Spezifische Daten für die Strukturierung z.B.
const KDop<REAL,K>& getBoundingBox () const;

class FaceAdapter<BasicTraits,..>
typedef ... TransformType;
typedef ... GeomFaceType;

GeometryAdapter (const GeomFaceType&);
GeometryAdapter (const TransformType&,

const GeomFaceType&);

GeomFaceType getOriginal () const;

// Spezifische Daten für die Strukturierung z.B.
const KDop<REAL,K>& getBoundingBox () const;

Mit einem zusätzlichen Adapterklassentyp können
auch Faces des Meshes mit Zusammenhangsinfor-
mationen [Botsch and Bischoff, 2002] verarbeitet wer-
den.

Adapterobjekte müssen aus einem Geometry-
Knoten bzw. einer Face zusammen mit der Welt-
Matrix konstruierbar sein. Für die Rückmeldung von
Ergebnissen existiert die Methode getOriginal, die das
zum Adapterobjekt gehörende OpenSG-Original lie-
fert.

Strukturierung mit Hüllkörpern

Die automatische Strukturierung von allgemeinen
Szenen erfordert die Identifikation von sinnvollen,
kleinsten Teilen innerhalb der Szene. Werden diese
sukzessive zu größeren Teilen zusammengefaßt, so
entsteht eine räumliche Hierarchie.

Um eine solche Strukturierung auf allgemeinen
Szenen schnell durchführen zu können, werden statt
der Teile geometrisch einfache Hüllkörper verwendet,
die die Teile jeweils enthalten.

Die Qualität der berechneten Hierarchie hängt da-
bei unter anderem vom Hüllkörpertyp ab:



• Kugel [Omohundro, 1989]
• Achsenparalleler Quader bzw. seine Verall-

gemeinerung Diskret-Orientiertes Polyeder (k-
DOP) [Klosowski et al., 1998]

• Beliebig-Orientierter Quader
[Gottschalk et al., 1996]

• Konvexes Polyeder
Außerdem erlauben Hüllkörper sowohl Struktu-

rierungsalgorithmen, die von-oben-nach-unten (top-
down), und solche, die von unten-nach-oben (bottom-
up) vorgehen.

GENVIS verwendet binäre Hierarchien aus k-
DOPs, die mit verschiedenen top-down Strukturie-
rungsalgorithmen erzeugt werden können. Gegeben
einen Hüllkörper, der n Primitive enthält, muß dieser
in zwei Teilgruppen mit eigenen Hüllkörpern unter-
teilt werden. Die Bewertung aller möglichen Untertei-
lungen in zwei Teilgruppen verbietet sich wegen der
exponentiellen Anzahl ( 1

2(2n − 2)) von Möglichkeiten
[Klosowski et al., 1998]. Aus diesem Grund wird die
Unterteilung anhand von Projektionen auf eine kleine
Anzahl von Achsen durchgeführt.
LongestSideMedian Als Achsen werden die Koordi-

natenachsen x,y,z verwendet. Die Unterteilung
erfolgt entlang der Achse, bezüglich der der Hüll-
körper am längsten ist. Unter den n−2 Untertei-
lungspositionen wird stets die Position �n

2� ge-
wählt.

LongestSideMean Die Wahl der Achse bezüglich
der unterteilt wird erfolgt wie bei LongestSideMe-
dian. Als Unterteilungsposition wird das arithme-
tische Mittel der Hüllkörperzentren (projiziert auf
die Unterteilungsachse) verwendet.

WeightedSurfaceArea Als Unterteilungsachse axis
und Unterteilungsposition p werden Werte
axis ∈ {x,y,z}, p ∈ {1,. . . ,n−1} mit minimalen
Kosten

C(axis, p) = 1
area(H1,... ,n ) (area(H1,... ,p)· p+
area(Hp+1,... ,n )· (n− p))

gewählt. Diese Kosten C(axis, p) sind eine obe-
re Schranke für die Kosten eines Strahlschnit-
tes mit dem Hüllkörper H1,... ,n , unterteilt in H1,... ,p

und Hp+1,... ,n [Müller and Fellner, 1999].
WeightedVolume Für den Schnitt mit einem Testkör-

per ist eine Unterteilung entsprechend der Hüll-
körpervolumina sinnvoll. In [Omohundro, 1989]
wird gezeigt, daß die mittlere Anfragezeit
O(∑{HHüllkörper der Hierarchie} vol(H)) für einen (im
Szenenhüllkörper) zufällig gewählten Testpunkt
ist. Die Schnittkosten mit dem Hüllkörper H1,... ,n ,

unterteilt in H1,... ,p und Hp+1,... ,n sind

C(axis, p) = vol(H1,... ,p)+ vol(Hp+1,... ,n )

Ob ein Hüllkörper unterteilt wird, wird über Schran-
ken wie die maximale Tiefe und die maximale Anzahl
von Primitiven im Hierarchieknoten gesteuert.

Abbildung 5 zeigt die Ebenen 2,4,6,8 der 6-DOP
Hierarchie (achsenparallele Quader), berechnet mit
LongestSideMean, WeightedSurfaceArea. Um von
einer binären zu einer 2i-ären Hierarchie (i > 1) zu
kommen, besteht die Möglichkeit jeweils i−1 Hierar-
chieebenen zusammenzufassen. Eine Hierarchie mit
Tiefe d hat nach der Modifikation die Tiefe d

i . Dies
ist insbesondere bei der Umstrukturierung des Sze-
nengraph ein erwünschter Effekt, weil eine flachere
Hierarchie geringere Traversierungskosten hat.

Reguläre Raumunterteilung

Neben der vom Szeneninhalt getriebenen Strukturie-
rung mit Hüllkörpern gibt es Anwendungen für ei-
ne reguläre Raumunterteilung. Mittels einer regulä-
ren Raumunterteilung wird der Szeneninhalt in einen
nahen Szenenteil und einen umgebenden Szenen-
teil unterteilt [Wimmer et al., 1999]. Für den umge-
benden Szenenteil werden dann bildbasierte Render-
Techniken angewendet. Die reguläre Raumuntertei-
lung kann auch für das Vorausladen von Szenen-
graphteilen eingesetzt werden.

Gegeben den 6-DOP Hüllkörper der Szene, wird
dieser regulär in Quader unterteilt. Die Anzahl m der
Quader kann spezifiziert werden über
• Quaderanzahl lmax entlang der längsten Seite
• Quaderanzahl lmin entlang der kürzesten Seite
• Quaderanzahl u pro Modelleinheit

Der Hüllkörper wird jeweils entlang der längsten
Achse halbiert und der Inhalt in die beiden Teil-
körper einsortiert. Bei Speicherung des Inhalts in
einem Vektor ist die erwartete Laufzeit O(n log n)
[Müller and Fellner, 1999]. Liegt eine Hüllkörperhier-
archie auf dem Inhalt vor, dann ist die erwartete Lauf-
zeit O(n) [Müller and Fellner, 1999].

Abbildung 6 zeigt die reguläre Unterteilung eines
Molekülmodells.



Abbildung 5: Ebenen 2,4,6,8 der 6-DOP Hierarchie auf dem Stadtmodell von Frankfurt. Oben berechnet mit
LongestSideMean, unten berechnet mit WeightedSurfaceArea, jeweils maxTie fe = 50, maxAnzahlPrimitive =
1024.

Abbildung 6: Ein Phospholipase-Molekülmodell,
strukturiert in ein reguläres Gitter mit 4 Gitterwürfeln
pro Modelleinheit.

Anwendungen

Räumliche Umstrukturierung des Szenen-
graph

Aus einer einmal berechneten k-DOP Hüllkörperhier-
archie kann mittels des Konverters BVol2OpenSG ein
OpenSG Szenengraph dieser räumlichen Struktur ab-
geleitet werden. Die Hierarchieknoten werden dabei
in OpenSG Group-Knoten und die Faces innerhalb
des Hierarchieknoten nach Materialien gruppiert in je-
weils einen Geometry-Knoten umgesetzt (Abbildung
7, für die Hierarchie vergleiche Abbildung 5 unten).

Abbildung 7: Frankfurt-Modell mit der Hüllkörperhier-
archie übernommen bis Ebene 4 bzw. Ebene 6. Die
Gruppierung nach gleichen Materialien wurde durch
Pointervergleich vorgenommen.

Kollisionserkennung

Eine Hauptanwendung der k-DOP Hüllkörperhierar-
chien ist die schnelle Filterung von Facemengen vor
dem eigentlichen Schnittest Punkt–Face bzw. Face–
Face [Klosowski et al., 1998].

Abbildung 8 zeigt die Anwendung von GENVIS in
der Simulation eines chaotischen Wasserrads. Ent-
lang der Strahlbahn werden Wasserpartikel auf Kol-
lision mit den Reservoirs getestet. Bei Kollision wird
ein Wasservolumen zum Füllstand aufaddiert, worauf
die Bewegung simuliert wird. Zudem fließt ständig
ein eingestelltes Wasservolumen aus allen Reservoirs



Abbildung 8: Anwendung der Hüllkörperhierarchie bei
der Kollisionserkennung in einer physikalischen Simu-
lation des chaotischen Wasserrads.

wieder ab. Für gewisse Modellparameter ist ein chao-
tisches Verhalten zu beobachten [Fischel, 1997].

Erweiterungen

Bottom-Up Konstruktion von Hüllkörperhier-
archien höheren Grades

Bottom-Up Konstruktionsalgorithmen bieten die Mög-
lichkeit jeweils eine Szenen-angepasste Anzahl von
Gruppen zu bilden. Die entstehende Hierar-
chie hat dann höheren, wechselnden Knotengrad
[Omohundro, 1989].

BSP-Baum zur Unterteilung in Zellen/Portale

In Innenraummodellen besteht die Möglichkeit mit
einer Unterteilung in Zellen/Portale die Zell-Zell
und die Kamera-Zell Sichtbarkeiten vorzuberechnen
[Teller and Séquin, 1991][Luebke and Georges, 1995].
Für die Vorberechnung müssen die Zellen und Portale
der Szene bekannt sein.
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