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ABSTRACT

Ein Szenengraph fir denselben Szenengraphinhalt
kann auf mehrere Arten strukturiert sein, abhéngig
von der Anwendung. In diesem Artikel wird die Biblio-
thek GENVIS flr rdumliche Strukturierungen auf dem
Szenengraph OpenSG mit einigen Anwendungen vor-
gestellt. Bei der Organisation von GENVIS spielt die
flexible und effiziente Anbindung an OpenSG eine
wichtige Rolle. Beispielhaft werden die Strukturierung
mit k-DOP Hullkérpern und die regulare Raumunter-
teilung vorgestellt. Insbesondere erstere kann zur
Kollisionserkennung und zur Umstrukturierung des
Szenengraph verwendet werden.

Schllsselworte: Szenengraph, OpenSG, Rdumliche
Strukturierung, Hullkérper Hierarchie, Reguldres Git-
ter, Culling, Collision Detection

Einleitung

Der Szenengraph hat sich fiir die schnelle Anzeige
von allgemeinen Szeneninhalten durchgesetzt. Der
Szeneninhalt liegt dabei als gerichteter azyklischer
Graph (DAG)! vor, wobei die inneren Knoten An-
zeigeattribute (Transformationen, Materialien, Umge-
bungseinfliisse wie Licht, Nebel usw.) verdndern und
die Blattknoten erst geometrische Primitive enthal-
ten [Blythe et al., 2000]. Der Vorteil der DAG-Struktur
liegt darin, daf3 auf einfache Weise das Anzeigever-

Im Szenengraph OpenSG ist ein Knoten aufgeteilt in zwei Tei-
le Node und NodeCore. Die Node-Objekte bilden einen Baum
von beliebigem Grad. Jedes Node-Objekt verweist auf ein Node-
Core-Objekt, das den Knotentyp festlegt. Die Node-Obijekte ste-
hen also in einer n-zu-1 Beziehung zu den NodeCore-Objekten.
Von den NodeCore-Objekten aus betrachtet, liegt also eine DAG-
Struktur vor.

halten definiert werden kann. Im allgemeinen verer-
ben innere Knoten ihre Attribute auf den Teilbaum un-
terhalb.

Dieses einfache Vererbungsverhalten bringt es je-
doch mit sich, daB nicht alle Sortierungen effizient
realisierbar sind. Fir statische Szeneninhalte mit vie-
len verschiedenen Materialien kann es zum Beispiel
sinnvoll sein nach Materialien zu sortieren und die
geometrische Primitive mit gleichem Material zusam-
menzufassen. Flr dynamische Szeneninhalte ist da-
gegen eine logische Struktur mit Transformationen
Uber den sich bewegenden Szenenteilen notwendig.
Fir ein effizientes Culling von statischen Szenen muf3
eine hinreichend feine raumliche Strukturierung im
Szenengraph vorliegen.

In den meisten Fallen wird der Szeneninhalt aus ei-
ner Szenendatei eingelesen, in der Gberhaupt keine
oder keine geeignete Strukturierung vorliegt. Ein Bei-
spiel zeigt Abbildung 1.

In diesem Artikel wird die Bibliothek GENVIS
vorgestellt, die flr solche Falle raumlich/logische
Strukturierungen auf dem Szenengraph OpenSG
[Reiners et al., 2000] zur Verfigung stellt. Dabei ist
die Verbindung der beiden Strukturen effizient und fle-
xibel Uber einen Cache realisiert. Die Darstellung in
diesem Artikel beschrankt sich auf die Strukturierung
mit k-DOP Huillkérpern und die regulare Raumunter-
teilung.

Anbindung an den Szenengraph
OpenSG

Wie in der Einleitung dargestellt, wird die Szenen-
graphstruktur von mehreren Faktoren beeinfluBt. Um
vielfaltigste geometrische Anfragen effizient behan-
deln zu kénnen, werden geeignete Datenstrukturen
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Abbildung 1: Beispiel fir einen grob, logisch struk-
turierten Szenengraph, der sich aber aufgrund feh-
lender rAumlicher Strukturierung schlecht zum Culling
eignet.

in einer separaten Bibliothek GENVIS implementiert
(Abbildung 2).

Die Datenstrukturen missen einmal aus dem Sze-
nengraph OpenSG aufgebaut und anschlieBend zu
diesem konsistent gehalten werden (Weg OpenSG
zu GENVIS). Als Briicke dazwischen fungiert der
OpenSGCache, der einmal aus dem Szenengraph
abgeleitet wird (GenvisPreprocAction). GENVIS be-
nutzt anschlieBend den OpenSGCache.

Far Anfragestellung und Anfragereaktion mul3 es
die Méoglichkeit geben, das Szenengraph-Objekt
zum Anfrageergebnis zu finden (Weg GENVIS zu
OpenSaG).
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Abbildung 2: Beziehungen von OpenSG und GENVIS
Uber den OpenSGCache.

Anfrage

! CacheSearcher !

Abbildung 4: Histogramm der Testsequenzldngen fur
einen Cache mit 277 Datensatzen (insgesamt Platz
fir 512 Datensatze). Die Statistik wurde tUber 250 Bil-
der des Frankfurt-Modells gewonnen.
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OpenSG zu GENVIS

Der fur geometrische Anfragen relevante Inhalt des
Szenengraphen (im wesentlichen Transform und ab-
geleitete NodeCore, Geometry) wird zur Konstrukti-
on von Adapterobjekten benutzt. Diese werden im
OpenSGCache gesammelt.

Der Cache erlaubt es zu einem Szenengraph-
knoten (identifiziert durch einen NodePtr) in Zeit
O(1) den zugehorigen Datensatz zu finden. Da-
zu wird eine Hashtabelle mit doppeltem Hashing
(h1 (node) = int(node), h; (node) = 2hj(node) + 1)
eingesetzt. Wie in Abbildung 4 zu sehen, werden fir
den Zugriff auf einen Datensatz hdchstens 2 Tabellen-
zugriffe bendtigt.

Der Cache-Datensatz zum Knoten *node umfaf3t
die Welt-Matrix, die Menge der Kindknoten und eine
Liste der Adapterobjekte

class OpenSGCacheData<CONTAINER>
OSG::NodePtr node;
CONTAINER children;
// = node->getMFChildren()
OSG::Matrix matrix;
// = node->getToWorld()
stl::vector<Adapter*> adapter;

Das Argument CONTAINER bezeichnet dabei eine
Containerklasse, die zur Speicherung der Menge der
Kindknoten verwendet wird. Im einfachsten Fall kann
hier ein Vektor verwendet werden. Fir die Sortierung
zum Beispiel nach dem Kameraabstand bietet sich ei-
ne Prioritatsliste (map) an [Staneker, 2001]. Die erfor-
derlichen Aktualisierungen der Container werden mit
der Methode void sort (const SORTFUNCTOR& s) im



Abbildung 3: Abarbeitung der Kindknoten bis zum Abstand 45.

OpenSGCache durchgefiihrt, wobei s einen zur Con-
tainerklasse passenden Sortfunktor bezeichnet. We-
gen der Lokalitadt des OpenSGCaches kann der Sort-
funktor sehr effizient auf alle Container in den Daten-
sétzen angewendet werden. Dies gilt insbesondere
bei Verwendung von Vektor als Containerklasse.

In einer Draw-Aktion DepthSortedDrawAction, die
auf den Cache zugreift, ist dann ein nach dem Kame-
raabstand sortiertes Abarbeiten der Kindknoten még-
lich. Fur jeden Frame wird zunachst die Aktualisie-
rung des gesamten Caches mit sort durchgefihrt. In
der Rekursion Uber alle Szenengraphknoten kénnen
dann die Kindknoten jeweils sortiert weiterverarbeitet
(also dem Viewfrustum-Test, Occlusion-Test unterzo-
gen) werden. Abbildung 3 zeigt eine Bildsequenz, bei
der die Abarbeitung der Container bei einem festge-
legten Maximalabstand abgebrochen wird.

GENVIS zu OpenSG

Generell gibt es in GENVIS eine Adapterklasse fiir
einen Geometry-Knoten und fiir eine einzelne Face
(Dreieck, Viereck) innerhalb eines Geometry-Knotens

class GeometryAdapter<BasicTraits,..>
typedef ... TransformType;
typedef ... GeomObjType;

GeometryAdapter (const GeomObjectTyped&);

GeometryAdapter (const TransformType&,
const GeomObjectTyped&);

GeomObjectType getOriginal () const;

// Spezifische Daten flr die Strukturierung z.B.
const KDop<REAL,K>& getBoundingBox () const;

class FaceAdapter<BasicTraits,..>
typedef ... TransformType;
typedef ... GeomFaceType;

GeometryAdapter (const GeomFaceType&);
GeometryAdapter (const TransformType&,
const GeomFaceType&);

GeomFaceType getOriginal () const;

// Spezifische Daten fir die Strukturierung z.B.
const KDop<REAL,K>& getBoundingBox () const;

Mit einem zusatzlichen Adapterklassentyp kénnen
auch Faces des Meshes mit Zusammenhangsinfor-
mationen [Botsch and Bischoff, 2002] verarbeitet wer-
den.

Adapterobjekte miissen aus einem Geometry-
Knoten bzw. einer Face zusammen mit der Welt-
Matrix konstruierbar sein. Fur die Rickmeldung von
Ergebnissen existiert die Methode getOriginal, die das
zum Adapterobjekt gehérende OpenSG-Original lie-
fert.

Strukturierung mit Hullkérpern

Die automatische Strukturierung von allgemeinen
Szenen erfordert die Identifikation von sinnvollen,
kleinsten Teilen innerhalb der Szene. Werden diese
sukzessive zu gréBeren Teilen zusammengefal3t, so
entsteht eine rAumliche Hierarchie.

Um eine solche Strukturierung auf allgemeinen
Szenen schnell durchfiihren zu kénnen, werden statt
der Teile geometrisch einfache Hullkérper verwendet,
die die Teile jeweils enthalten.

Die Qualitat der berechneten Hierarchie héngt da-
bei unter anderem vom Hullkérpertyp ab:



e Kugel [Omohundro, 1989]

e Achsenparalleler Quader bzw. seine Verall-
gemeinerung Diskret-Orientiertes Polyeder (k-
DOP) [Klosowski et al., 1998]

e Beliebig-Orientierter Quader
[Gottschalk et al., 1996]

e Konvexes Polyeder

AuBerdem erlauben Hillkérper sowohl Struktu-
rierungsalgorithmen, die von-oben-nach-unten (top-
down), und solche, die von unten-nach-oben (bottom-
up) vorgehen.

GENVIS verwendet binare Hierarchien aus k-
DOPs, die mit verschiedenen top-down Strukturie-
rungsalgorithmen erzeugt werden kénnen. Gegeben
einen Hullkérper, der n Primitive enthalt, muf3 dieser
in zwei Teilgruppen mit eigenen Hullkérpern unter-
teilt werden. Die Bewertung aller méglichen Untertei-
lungen in zwei Teilgruppen verbietet sich wegen der
exponentiellen Anzahl (%(2” —2)) von Mdglichkeiten
[Klosowski et al., 1998]. Aus diesem Grund wird die
Unterteilung anhand von Projektionen auf eine kleine
Anzahl von Achsen durchgefihrt.
LongestSideMedian Als Achsen werden die Koordi-

natenachsen x,y,z verwendet. Die Unterteilung
erfolgt entlang der Achse, bezlglich der der Huill-
kérper am langsten ist. Unter den n — 2 Untertei-
lungspositionen wird stets die Position |7 ] ge-
wahlt.

LongestSideMean Die Wahl der Achse beziglich
der unterteilt wird erfolgt wie bei LongestSideMe-
dian. Als Unterteilungsposition wird das arithme-
tische Mittel der Hullkérperzentren (projiziert auf
die Unterteilungsachse) verwendet.

WeightedSurfaceArea Als Unterteilungsachse axis
und Unterteilungsposition p werden Werte
axis € {x,y,z}, p € {1,...,n— 1} mit minimalen
Kosten

C(axis, p) —(area(H...p)- p+

N S
area(H,

area(Hy+1,.5) (n—p))

gewahlt. Diese Kosten C(axis, p) sind eine obe-
re Schranke fir die Kosten eines Strahlschnit-
tes mit dem Hullkérper H . ,, unterteiltin H; . ,
und Hy 1 .., [Miller and Fellner, 1999].
WeightedVolume Fir den Schnitt mit einem Testkor-
per ist eine Unterteilung entsprechend der Hiill-
kérpervolumina sinnvoll. In [Omohundro, 1989]
wird gezeigt, daB die mittlere Anfragezeit
O(X {Huliksrper der Hierarchie} VOL(H)) fUr einen (im
Szenenhiillkdrper) zufallig gewéahlten Testpunkt
ist. Die Schnittkosten mit dem Hullkérper Hy .,

unterteiltin Hy . , und Hy, 1 ., sind

C(axis,p) =vol(H; .. ,)+Vvol(Hyi1.. n)

Ob ein Hullkérper unterteilt wird, wird Gber Schran-
ken wie die maximale Tiefe und die maximale Anzahl
von Primitiven im Hierarchieknoten gesteuert.

Abbildung 5 zeigt die Ebenen 2,4,6,8 der 6-DOP
Hierarchie (achsenparallele Quader), berechnet mit
LongestSideMean, WeightedSurfaceArea. Um von
einer bindren zu einer 2'-aren Hierarchie (i > 1) zu
kommen, besteht die Méglichkeit jeweils i — 1 Hierar-
chieebenen zusammenzufassen. Eine Hierarchie mit
Tiefe d hat nach der Modifikation die Tiefe %. Dies
ist insbesondere bei der Umstrukturierung des Sze-
nengraph ein erwinschter Effekt, weil eine flachere
Hierarchie geringere Traversierungskosten hat.

Reguldare Raumunterteilung

Neben der vom Szeneninhalt getriebenen Strukturie-
rung mit Hullkérpern gibt es Anwendungen fir ei-
ne reguldre Raumunterteilung. Mittels einer regula-
ren Raumunterteilung wird der Szeneninhalt in einen
nahen Szenenteil und einen umgebenden Szenen-
teil unterteilt [Wimmer et al., 1999]. Fir den umge-
benden Szenenteil werden dann bildbasierte Render-
Techniken angewendet. Die reguldre Raumuntertei-
lung kann auch fur das Vorausladen von Szenen-
graphteilen eingesetzt werden.

Gegeben den 6-DOP Hullkérper der Szene, wird
dieser regulér in Quader unterteilt. Die Anzahl m der
Quader kann spezifiziert werden lber

e Quaderanzahl [, entlang der langsten Seite

e Quaderanzahl [, entlang der kilrzesten Seite

e Quaderanzahl u pro Modelleinheit

Der Hullkérper wird jeweils entlang der I&ngsten
Achse halbiert und der Inhalt in die beiden Teil-
korper einsortiert. Bei Speicherung des Inhalts in
einem Vektor ist die erwartete Laufzeit O(nlogn)
[Muller and Fellner, 1999]. Liegt eine Hullkérperhier-
archie auf dem Inhalt vor, dann ist die erwartete Lauf-
zeit O(n) [Muller and Fellner, 1999].

Abbildung 6 zeigt die regulére Unterteilung eines
Molekiimodells.



Abbildung 5: Ebenen 2.4,6,8 der 6-DOP Hierarchie auf dem Stadtmodell von Frankfurt. Oben berechnet mit
LongestSideMean, unten berechnet mit WeightedSurfaceArea, jeweils maxTie fe = 50, maxAnzahl Primitive =

1024.

Abbildung 6:

Ein Phospholipase-Molekilmodell,
strukturiert in ein regulares Gitter mit 4 Gitterwurfeln
pro Modelleinheit.

Anwendungen

Raumliche Umstrukturierung des Szenen-
graph

Aus einer einmal berechneten k-DOP Hiuillkérperhier-
archie kann mittels des Konverters BVol20penSG ein
OpenSG Szenengraph dieser rAumlichen Struktur ab-
geleitet werden. Die Hierarchieknoten werden dabei
in OpenSG Group-Knoten und die Faces innerhalb
des Hierarchieknoten nach Materialien gruppiertin je-
weils einen Geometry-Knoten umgesetzt (Abbildung
7, fur die Hierarchie vergleiche Abbildung 5 unten).

Abbildung 7: Frankfurt-Modell mit der Hullkérperhier-
archie ibernommen bis Ebene 4 bzw. Ebene 6. Die
Gruppierung nach gleichen Materialien wurde durch
Pointervergleich vorgenommen.

Kollisionserkennung

Eine Hauptanwendung der k-DOP Hillkérperhierar-
chien ist die schnelle Filterung von Facemengen vor
dem eigentlichen Schnittest Punkt—Face bzw. Face—
Face [Klosowski et al., 1998].

Abbildung 8 zeigt die Anwendung von GENVIS in
der Simulation eines chaotischen Wasserrads. Ent-
lang der Strahlbahn werden Wasserpartikel auf Kol-
lision mit den Reservoirs getestet. Bei Kollision wird
ein Wasservolumen zum Fullstand aufaddiert, worauf
die Bewegung simuliert wird. Zudem flieBt standig
ein eingestelltes Wasservolumen aus allen Reservoirs
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Abbildung 8: Anwendung der Hullkérperhierarchie bei
der Kollisionserkennung in einer physikalischen Simu-
lation des chaotischen Wasserrads.

wieder ab. Fur gewisse Modellparameter ist ein chao-
tisches Verhalten zu beobachten [Fischel, 1997].

Erweiterungen

Bottom-Up Konstruktion von Hiillkdrperhier-
archien héheren Grades

Bottom-Up Konstruktionsalgorithmen bieten die Még-
lichkeit jeweils eine Szenen-angepasste Anzahl von
Gruppen zu bilden. Die entstehende Hierar-
chie hat dann hdéheren, wechselnden Knotengrad
[Omohundro, 1989].

BSP-Baum zur Unterteilung in Zellen/Portale

In Innenraummodellen besteht die Moglichkeit mit
einer Unterteilung in Zellen/Portale die Zell-Zell
und die Kamera-Zell Sichtbarkeiten vorzuberechnen

[Teller and Séquin, 1991][Luebke and Georges, 1995].

Fir die Vorberechnung missen die Zellen und Portale
der Szene bekannt sein.
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