

G^1 rational blend interpolatory schemes: a comparative study

Maria Boschiroli^{a,b,*}, Christoph Fünfzig^c, Lucia Romani^b, Gudrun Albrecht^a

^a*Univ Lille Nord de France, UVHC, LAMAV-CGAO, FR no. 2956,
Le Mont Houy, F-59313 Valenciennes, France*

^b*Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca,
Via Cozzi 53, 20125 Milano, Italia*

^c*LE2I (UMR CNRS 5158), Université de Bourgogne,
9 Avenue Alain Savary, F-21078 Dijon, France*

Abstract

Interpolation of triangular meshes is a subject of great interest in many computer graphics related applications, as, for example, gaming and realtime rendering. One of the main approaches to interpolate the positions and normals of the mesh vertices is the use of parametric triangular Bézier patches. As it is well known, any method aiming at constructing a parametric, tangent plane (G^1) continuous surface has to deal with the vertex consistency problem. In this article, we propose a comparison of three recently appeared methods that use a particular technique called *rational blend* to avoid this problem. Together with these three methods we present a new scheme, a cubic Gregory patch, that has been inspired by one of them. Our comparison includes an analysis of their computational costs on CPU and GPU, a study of their capabilities of reproducing analytic surfaces and their response to different surface interrogation methods on arbitrary triangle meshes with a low triangle count that actually occur in their real-world use.

*Corresponding author: Maria Boschiroli, Tel. +39 347 1566378, Fax +33 (0)3 27 51 19 00.

Email addresses:

Maria.Boschiroli@univ-valenciennes.fr, maria.boschiroli@gmail.com (Maria Boschiroli), c.fuenfzig@gmx.de (Christoph Fünfzig), lucia.romani@unimib.it (Lucia Romani), [Gudrun Albrecht](mailto:Gudrun.Albrecht@univ-valenciennes.fr))

Keywords:

triangular mesh, G^1 local interpolation, rational blend, Gregory patch, Bézier triangle, shape interrogation.

2010 MSC: 65D05,

2010 MSC: 65D17,

2010 MSC: 65D18,

2010 MSC: 68U05,

2010 MSC: 68U07.

¹ 1. Introduction

² Triangular meshes, namely meshes in which the faces are triangular and
³ any number of faces may join at a vertex, are sufficiently general to represent
⁴ surfaces of arbitrary genus. For this reason their interpolation is a subject of
⁵ great interest in many computer graphics related applications such as gaming
⁶ and realtime rendering.

⁷ Parametric triangular Bézier patches are a simple geometric primitive
⁸ that can be used to interpolate scattered data on triangular meshes while
⁹ locally controlling the surface by manipulating its control points. The idea
¹⁰ behind the use of these patches is that each original flat triangle of the input
¹¹ mesh is replaced by a curved shape, defined as a parametric triangular Bézier
¹² patch interpolating the three vertex positions and the associated normals.

¹³ Not surprisingly, every method that tries to solve a data fitting problem
¹⁴ encounters the same main difficulty: dealing with the smoothness of the
¹⁵ surface. In [1] a survey on the existing methods for the construction of
¹⁶ continuous (C^0) parametric interpolants on triangular meshes can be found.
¹⁷ These schemes, which construct Bézier patches using only the information
¹⁸ related to the underlying triangle, emerged as attractive solutions responding
¹⁹ to the requirements of resource-limited hardware environments.

²⁰ However, to be useful for surface design, a parametric data fitting scheme
²¹ must produce a smooth surface. From a geometric point of view, the concept
²² of C^1 continuity is not suitable to characterise the smoothness of a surface
²³ since a change in the parameterisation of one of two adjacent patches changes
²⁴ the cross boundary derivatives of that patch, thus destroying the C^1 conti-
²⁵ nuity. Therefore, in practice, the concept of tangent plane continuity, also
²⁶ known as G^1 continuity, is used (see e.g. [2] for a formal definition of G^1
²⁷ continuity between triangular Bézier patches).

28 Constructing *two* patches that meet with G^1 continuity is straight-forward.
29 On the contrary, a complex problem called *vertex consistency problem* arises
30 when constructing a closed network of *more than two* G^1 joined patches inci-
31 dent to a vertex [3, 4]. Every scheme aiming at constructing a tangent plane
32 continuous surface has to cope with this problem. The G^1 methods proposed
33 in the literature either bypass it avoiding the computation of the solution of
34 the associated linear system or find a way to make it solvable.

35 In [5] a survey of the G^1 -continuous parametric interpolatory schemes for
36 triangular meshes proposed up to the beginning of the nineties is provided.
37 The authors classify several of the most famous methods, like Shirman-Séquin
38 [6], Nielson [7], and triangular Gregory Patch [8], and offer a detailed com-
39 parison of them.

40 In the present article, we focus on three methods appeared after this
41 survey that use a particular technique called *rational blends*. Together with
42 these three methods we present a new approach, a cubic Gregory patch that
43 has been inspired by one of them.

44 The remainder of the paper article is organised as follows. In section 2,
45 the rational blend technique is presented in detail followed by an explanation
46 of the three methods and the presentation of our new cubic scheme. In
47 section 3, we first analyse their computational costs (section 3.1) and then
48 compare the schemes by looking at the reproduction of analytic surfaces like
49 the sphere and the torus (section 3.2). Finally, in section 3.3 we investigate
50 their response to surface interrogation methods on arbitrary triangle meshes
51 with a low triangle count, which actually occur in real-world use of these
52 schemes. To conclude, in section 4 we summarise the main results of our
53 comparative study.

54 2. G^1 rational blend interpolatory schemes

55 The key idea behind the schemes we are going to present is that each orig-
56 inal flat triangle of the input mesh can be replaced by a curved shape, namely
57 a parametric triangular Bézier patch interpolating the three vertex positions
58 and vertex normals. Therefore, the patch's control net is constructed only
59 by means of the point and normal information at the vertices of the input
60 mesh.

61 In order to introduce the schemes let us consider a subset of 4 triangles as
62 illustrated in Figure 1, the central one with vertices \mathbf{p}_0 , \mathbf{p}_1 , \mathbf{p}_2 , and respective
63 unit normal vectors \mathbf{n}_0 , \mathbf{n}_1 , \mathbf{n}_2 , as well as edge vectors $\mathbf{e}_1 = \mathbf{p}_1 - \mathbf{p}_0$, $\mathbf{e}_2 =$

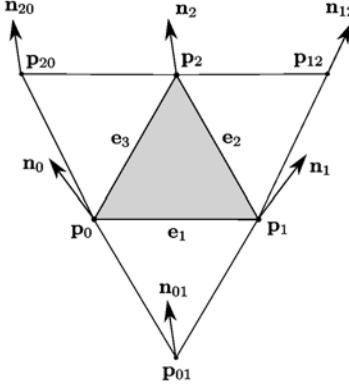


Figure 1: Notation for the vertices and respective normals of the input flat triangles.

⁶⁴ $\mathbf{p}_2 - \mathbf{p}_1$, $\mathbf{e}_3 = \mathbf{p}_0 - \mathbf{p}_2$. Considering the neighbouring triangle adjacent to
⁶⁵ the edge \mathbf{e}_1 , let us use the notation \mathbf{p}_{01} for its remaining vertex and \mathbf{n}_{01} for
⁶⁶ its associated normal, and analogously we define \mathbf{p}_{12} , \mathbf{n}_{12} with respect to the
⁶⁷ edge \mathbf{e}_2 and \mathbf{p}_{20} , \mathbf{n}_{20} with respect to the edge \mathbf{e}_3 . Additionally, we refer to
⁶⁸ the tangent plane in \mathbf{p}_i , which is defined by \mathbf{n}_i , by τ_i , $i = 0, 1, 2, 01, 12, 20$.

Using a triangular network of control points \mathbf{b}_{ijk} ($i + j + k = n$, $i, j, k \geq 0$) and degree- n bivariate Bernstein polynomials $B_{ijk}^n(u, v, w) = \frac{n!}{i!j!k!} u^i v^j w^k$ ($u + v + w = 1$), a degree- n triangular Bézier patch is defined by

$$\mathbf{t}(u, v, w) = \sum_{i+j+k=n} \mathbf{b}_{ijk} B_{ijk}^n(u, v, w).$$

⁶⁹ It maps a triangular domain $D \subset \mathbb{R}^2$ to an affine space, typically \mathbb{R}^3 , where
⁷⁰ u , v and w are the barycentric coordinates in D .

The approach we survey here is based on the creation of a triangular Bézier patch by means of *rational blends*. Multiple triangular Bézier patches are created such that each patch is G^1 -continuous to its neighbour along only one triangle edge. To evaluate the resulting rational blend interpolant at some parameter values (u, v, w) , each of the constructed Bézier patches is evaluated at these parameter values, then an affine combination of these points is taken. The coefficients of the affine combination are rational functions of the parameters, hence the name rational blend. Therefore a rational

blend degree- n triangular Bézier patch is defined by

$$\mathbf{s}(u, v, w) = \sum_{i+j+k=n} \mathbf{b}_{ijk}(u, v, w) B_{ijk}^n(u, v, w),$$

71 where the control points $\mathbf{b}_{ijk}(u, v, w)$ are affine combinations of the con-
72 structed points using rational blending functions.

73 Each boundary of the resulting interpolant has the tangent plane field of
74 one of the constructed patches and therefore the patch has C^1 joins along all
75 the boundaries. The only points on the boundary that have contributions
76 from more than one patch are the corners. The two patches that contribute
77 to tangent plane continuity at the corner will in general have different mixed
78 second order partial derivatives. Vertex consistency is bypassed by allowing
79 inconsistent mixed partial second order derivatives at the corner points.

80 In Figure 2 the points to be blended to define the control points $\mathbf{b}_{ijk}(u, v, w)$
81 are shown schematically for the four schemes compared in the next sections.
82 We review parametric hybrid triangular Bézier patches in section 2.1, PNG1
83 triangles in section 2.2 and Walton and Meek’s Gregory patch in section 2.3.
84 Finally, in section 2.4 we propose a new cubic Gregory patch inspired by
85 Walton and Meek’s patch.

86 *2.1. Parametric hybrid triangular Bézier patches*

87 This first scheme was proposed in [9, 10] and is based on a method intro-
88 duced in [11] by Foley and Opitz for interpolation of scattered data above a
89 plane using a functional hybrid cubic Bézier patch.

90 The idea of Davidchuck and Mann is to “parameterise” this method by
91 choosing a plane for each triangle pair, project the vertices of the triangle and
92 its neighbour onto that plane and then perform the functional Foley-Opitz
93 C^1 construction on the projected points. In Figure 3 one example of the
94 projection of a triangle pair is shown. Once a plane is chosen as a natural
95 parameterisation, five points for each neighbour are constructed using only
96 the triangle vertices and the associated normals. The control points for the
97 cubic boundary curve are defined by Hermite interpolation and the Foley-
98 Opitz cross boundary construction [11] determines the first line of interior
99 control points. In Figure 4, for example, the five red points constructed from
100 the edge \mathbf{e}_1 are shown. Thus, finally, three sets of five points $\mathbf{b}_{ijk,1}$, $\mathbf{b}_{ijk,2}$
101 and $\mathbf{b}_{ijk,3}$ are computed, each set representing a C^1 construction along one
102 triangle edge. These three sets of points share the same triangle vertices
103 but, in general, differ in the rest of the boundary and in the interior. Figure

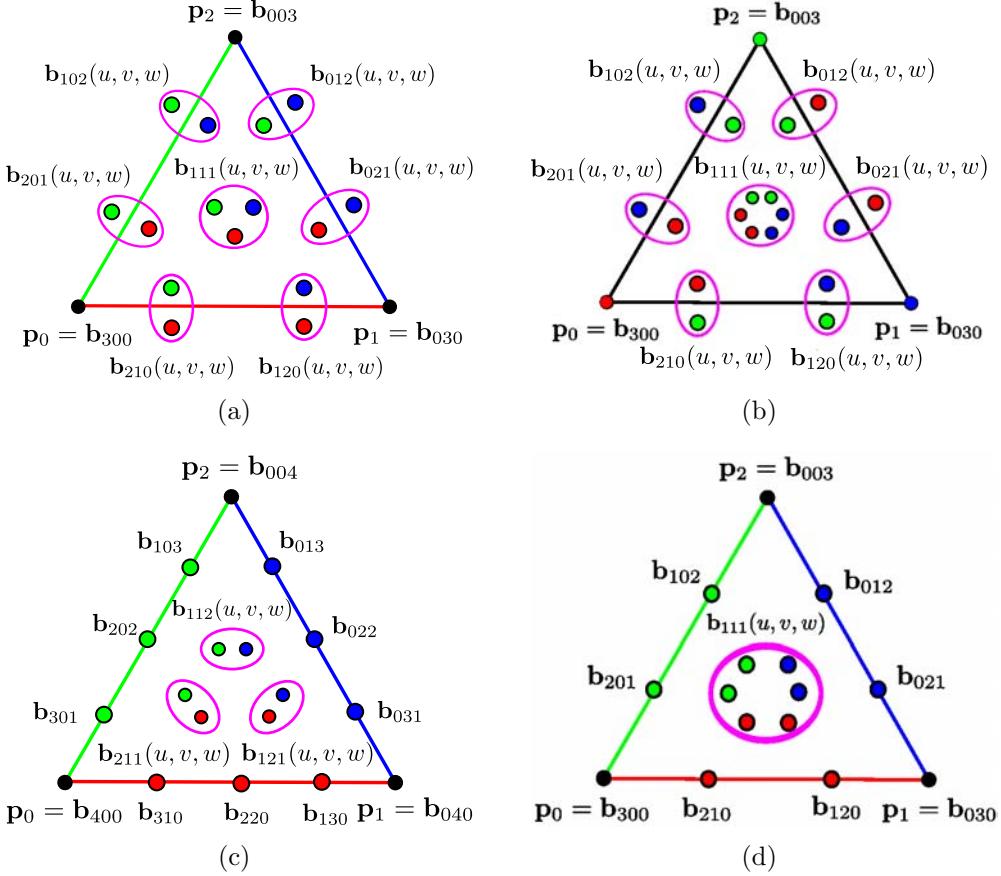


Figure 2: Points defining the control points $\mathbf{b}_{ijk}(u, v, w)$ for (a) Parametric hybrid patch, (b) PNG1 triangles, (c) Walton and Meek's Gregory patch and (d) Cubic version of Walton and Meek's patch.

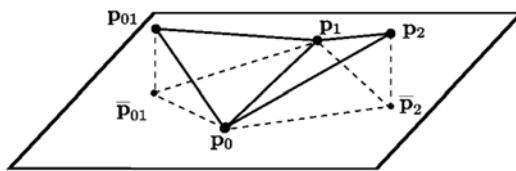


Figure 3: Plane used to parameterise neighbouring patch pairs.

104 2(a) shows the entire domain control net for the *parametric hybrid triangular Bézier patch*.

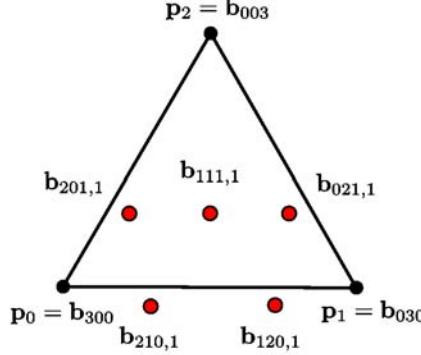


Figure 4: Five points (in red) are constructed from the edge e_1 .

105 These three sets of points are then blended together to define the control points $\mathbf{b}_{ijk}(u, v, w)$. As concerns the control points on the border, they are obtained by an asymmetric blend. On the edge e_1 , for example,

$$\mathbf{b}_{210}(u, v, w) = \frac{(1-w)v^2\mathbf{b}_{210,1} + (1-v)w^2\mathbf{b}_{210,3}}{(1-w)v^2 + (1-v)w^2},$$

$$\mathbf{b}_{120}(u, v, w) = \frac{(1-w)u^2\mathbf{b}_{120,1} + (1-u)w^2\mathbf{b}_{120,2}}{(1-w)u^2 + (1-u)w^2};$$

using Nielson's blending functions, firstly used in [7], the central control point is defined by

$$\mathbf{b}_{111}(u, v, w) = a_0(u, v, w)\mathbf{b}_{111,1} + a_1(u, v, w)\mathbf{b}_{111,2} + a_2(u, v, w)\mathbf{b}_{111,3},$$

where

$$a_i(t_0, t_1, t_2) = \frac{t_j t_k}{t_i t_j + t_i t_k + t_j t_k}, \quad i \neq j, \quad i \neq k, \quad j \neq k.$$

106 We observe that this construction heavily depends on the plane chosen
 107 for the parameterisation and, as a consequence, this choice is crucial for
 108 controlling the control points' positions. In particular, the orientation of
 109 the plane is extremely important. Two different planes are proposed in [10].
 110 One failsafe method is to take the plane that is perpendicular to the bisecting
 111 plane of the two neighbouring triangles and that also contains their common

edge. Another possibility is to use the information provided by the normals at the triangle vertices to construct the plane, by taking, for example, the plane orthogonal to the average of the normals at the two triangle vertices on the common border. Although the second construction does not always guarantee a valid plane, in general it creates better shaped surfaces. In section 3 we show some examples of meshes exhibiting stability problems related to an inconvenient choice of this plane (more details can be found in [10]).

2.2. PNG1 Triangles

PNG1 triangles [12] are similar only in spirit to the hybrid parametric patches since cubic triangular Bézier patches for each edge of a triangle are constructed. Actually, as shown in Figure 2, this scheme differs from the previously described one, as the points to be blended to define the Bézier control points are obtained starting from the vertices of the triangle. For example, the red points in Figure 2(b) are computed using \mathbf{p}_0 and τ_0 .

For the sake of simplicity, let us explain how the points are constructed with respect to the edge \mathbf{e}_1 , i.e., the eight points $\mathbf{b}_{201,0}$, $\mathbf{b}_{201,1}$, $\mathbf{b}_{021,0}$, $\mathbf{b}_{021,1}$, $\mathbf{b}_{210,0}$, $\mathbf{b}_{120,1}$, $\mathbf{b}_{111,\mathbf{p}_0,01}$ and $\mathbf{b}_{111,\mathbf{p}_1,01}$, shown in Figure 5. The other points are generated similarly.

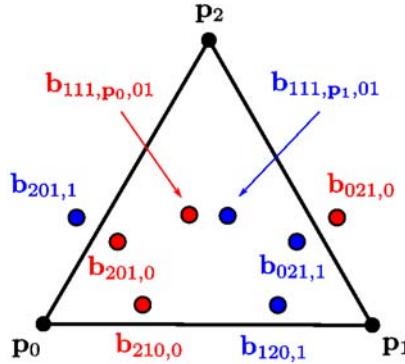


Figure 5: The eight points $\mathbf{b}_{201,0}$, $\mathbf{b}_{201,1}$, $\mathbf{b}_{021,0}$, $\mathbf{b}_{021,1}$, $\mathbf{b}_{210,0}$, $\mathbf{b}_{120,1}$, $\mathbf{b}_{111,\mathbf{p}_0,01}$ and $\mathbf{b}_{111,\mathbf{p}_1,01}$ constructed from \mathbf{p}_0 and \mathbf{p}_1 with respect to the edge \mathbf{e}_1 .

First, the points \mathbf{p}_1 , \mathbf{p}_2 , and \mathbf{p}_{01} are projected in the direction of \mathbf{n}_0 onto the tangent plane τ_0 , Figure 6 left, and the points \mathbf{p}_0 , \mathbf{p}_{01} , and \mathbf{p}_2 in the

133 direction of \mathbf{n}_1 onto the tangent plane τ_1 , Figure 6 right. The result of these
 134 projections are two adjacent triangles $\triangle \mathbf{p}_0 \bar{\mathbf{p}}_1^{\tau_0} \bar{\mathbf{p}}_2^{\tau_0}$, $\triangle \mathbf{p}_0 \bar{\mathbf{p}}_1^{\tau_0} \bar{\mathbf{p}}_{01}^{\tau_0}$ in the plane τ_0
 135 and $\triangle \bar{\mathbf{p}}_0^{\tau_1} \mathbf{p}_1 \bar{\mathbf{p}}_2^{\tau_1}$, $\triangle \bar{\mathbf{p}}_0^{\tau_1} \mathbf{p}_1 \bar{\mathbf{p}}_{01}^{\tau_1}$ in τ_1 . Subdivision of the edges $\mathbf{p}_0 \bar{\mathbf{p}}_1^{\tau_0}$, $\mathbf{p}_0 \bar{\mathbf{p}}_2^{\tau_0}$ and
 136 $\mathbf{p}_0 \bar{\mathbf{p}}_{01}^{\tau_0}$ by factor 1/3 provides a pair of subtriangles (marked in red in Figure
 137 6 left) whose vertices on the edges $\mathbf{p}_0 \bar{\mathbf{p}}_1^{\tau_0}$ and $\mathbf{p}_0 \bar{\mathbf{p}}_2^{\tau_0}$ define, respectively, the
 138 points $\mathbf{b}_{210,0}$ and $\mathbf{b}_{201,0}$. Analogously, on τ_1 subdivision of the triangle edges
 139 provides a pair of subtriangles (marked in blue in Figure 6 right) that defines
 the points $\mathbf{b}_{120,1}$ and $\mathbf{b}_{021,1}$.

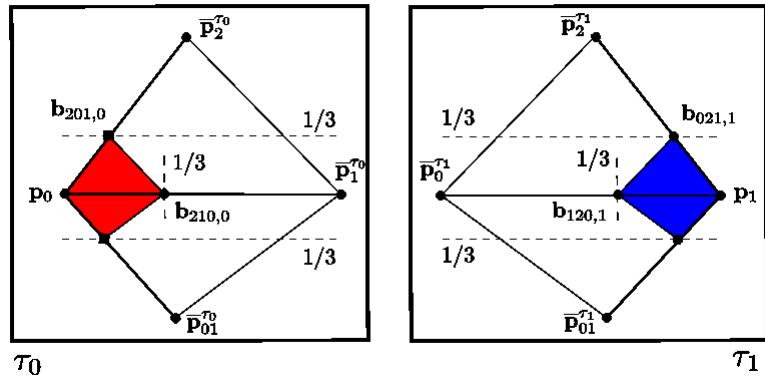


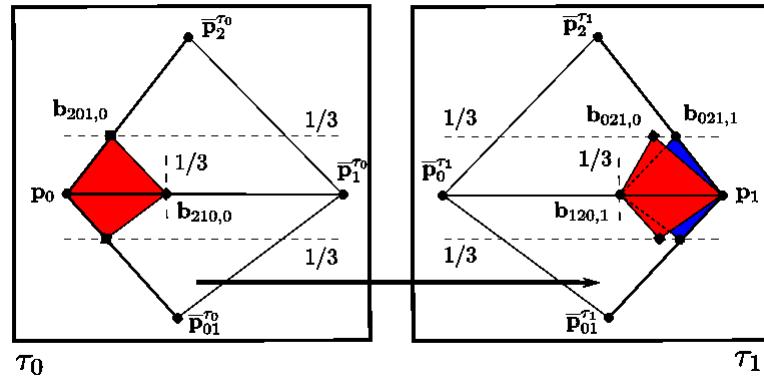
Figure 6: Construction of points $\mathbf{b}_{201,0}$, $\mathbf{b}_{210,0}$, $\mathbf{b}_{120,1}$ and $\mathbf{b}_{021,1}$.

140
 141 An affine transformation of the triangle $\triangle \mathbf{p}_0 \mathbf{b}_{201,0} \mathbf{b}_{210,0}$ from the tangent
 142 plane τ_0 into the tangent plane τ_1 provides the point $\mathbf{b}_{021,0}$ (Figure 7(a))
 143 and an affine transformation of the triangle $\triangle \mathbf{p}_1 \mathbf{b}_{021,1} \mathbf{b}_{120,1}$ from τ_1 into τ_0
 144 provides the point $\mathbf{b}_{201,1}$ (Figure 7(b)).

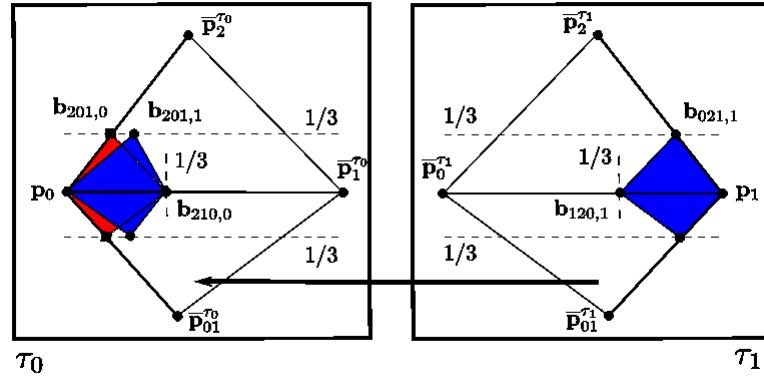
For the two interior points, let τ_{e01} be the plane defined by \mathbf{n}_{e01} , where

$$\begin{aligned}\mathbf{g}_1 &= \mathbf{b}_{120,1} - \mathbf{b}_{210,0} \\ \mathbf{g}_2 &= (\mathbf{n}_T + \mathbf{n}_{T01}) \times \mathbf{g}_1 \\ \mathbf{n}_{e01} &= \mathbf{g}_1 \times \mathbf{g}_2,\end{aligned}$$

145 \mathbf{n}_T is the normal of the triangle plane, and \mathbf{n}_{T01} denotes the normal of
 146 the neighbour triangle plane. As illustrated in Figure 8, a transfer of the
 147 red triangle $\triangle \mathbf{p}_0 \mathbf{b}_{201,0} \mathbf{b}_{210,0}$ from τ_0 to τ_{e01} provides the points $\mathbf{b}_{111,p_0,01}$,
 148 and a transfer of the blue triangle $\triangle \mathbf{p}_1 \mathbf{b}_{021,1} \mathbf{b}_{120,1}$ from τ_1 to τ_{e01} , provides
 149 $\mathbf{b}_{111,p_1,01}$.



(a)



(b)

Figure 7: (a) Affine transformation of the triangle from tangent plane τ_0 into the tangent plane τ_1 . (b) Affine transformation of the triangle from tangent plane τ_1 into the tangent plane τ_0 .

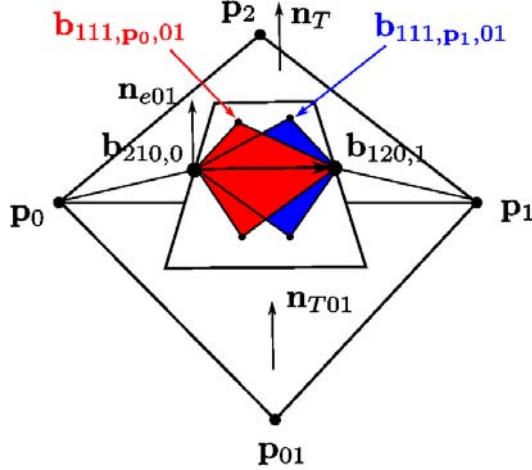


Figure 8: Construction of the middle plane by two adjacent triangle normals and $\mathbf{b}_{120,1} - \mathbf{b}_{210,0}$ to provide the points $\mathbf{b}_{111,p_0,01}$ and $\mathbf{b}_{111,p_1,01}$.

150 Applying the described procedure to the edges \mathbf{e}_2 and \mathbf{e}_3 , provides all the
151 points as schematically grouped and coloured in Figure 2(b).

The blending functions for the final control points $\mathbf{b}_{ijk}(u, v, w)$ are derived by imposing the conditions to get a G^1 join across the edges. Again an asymmetric blend is proposed for the boundary control points. On the edge \mathbf{e}_1 , for example,

$$\begin{aligned}\mathbf{b}_{210}(u, v, w) &= \frac{1}{w^2 + (1-w)^2} ((1-w)^2 \mathbf{b}_{210,0} + w^2 \mathbf{b}_{210,2}), \\ \mathbf{b}_{120}(u, v, w) &= \frac{1}{w^2 + (1-w)^2} ((1-w)^2 \mathbf{b}_{120,1} + w^2 \mathbf{b}_{120,2}),\end{aligned}$$

and Nielson-like functions for the six interior points yield

$$\begin{aligned}\mathbf{b}_{111}(u, v, w) &= \frac{uw}{uv + uw + vw} \left(\frac{w(1-u)\mathbf{b}_{111,p_2,20} + u(1-w)\mathbf{b}_{111,p_0,20}}{w+u-2uw} \right) + \\ &+ \frac{uv}{uv + uw + vw} \left(\frac{u(1-v)\mathbf{b}_{111,p_0,01} + v(1-u)\mathbf{b}_{111,p_1,01}}{u+v-2uv} \right) + \\ &+ \frac{vw}{uv + uw + vw} \left(\frac{v(1-w)\mathbf{b}_{111,p_1,12} + w(1-v)\mathbf{b}_{111,p_2,12}}{w+v-2vw} \right).\end{aligned}\tag{1}$$

152 2.3. Walton and Meek's Gregory patch

153 In 1996 Walton and Meek proposed a new quartic Gregory patch in [13].
 154 Walton and Meek's definition of the patch heavily depends on the construction
 155 of the cubic boundary curves $\mathbf{c}_i(t)$, $i = 1, 2, 3$, described in two previous
 156 articles [14, 15]. They create a specific tangent ribbon along each boundary
 157 curve and then they generate a surface patch with cross-boundary directional
 158 derivatives that lie in that plane.

A reasonable candidate for this plane is the one spanned by the derivative of the curve, i.e., the tangent vector

$$\dot{\mathbf{c}}_i(t) = 3 \sum_{k=0}^2 \mathbf{w}_k^i B_k^2(t) \quad (2)$$

and the vector

$$\mathbf{h}_i(t) = \sum_{k=0}^2 \mathbf{a}_k^i B_k^2(t), \quad 0 \leq t \leq 1, \quad i = 1, 2, 3, \quad (3)$$

where

$$\begin{aligned} \mathbf{a}_0^i &= \mathbf{n}_{i-1} \times \frac{\mathbf{w}_0^i}{\|\mathbf{w}_0^i\|}, \\ \mathbf{a}_2^i &= \mathbf{n}_i \times \frac{\mathbf{w}_2^i}{\|\mathbf{w}_2^i\|}, \\ \mathbf{a}_1^i &= \frac{\mathbf{a}_0^i + \mathbf{a}_2^i}{\|\mathbf{a}_0^i + \mathbf{a}_2^i\|}, \end{aligned} \quad (4)$$

159 with $\mathbf{n}_3 = \mathbf{n}_0$. See Figure 9 for an example.

A triangular quartic Gregory patch can now be constructed. The control points of the quartic boundary curves \mathbf{c}_i (degree raised from cubic) are used as control points of the patch boundaries. Let the interior control points adjacent to a boundary (e.g. \mathbf{b}_{112} and \mathbf{b}_{121} with respect to the boundary corresponding to \mathbf{e}_2) be $\mathbf{g}_{i,1}$ and $\mathbf{g}_{i,2}$, $i = 1, 2, 3$. This implies that each interior control point is determined twice, once for each boundary it is associated with, as shown in Figure 2(c). These points $\mathbf{g}_{i,1}$ and $\mathbf{g}_{i,2}$, $i = 1, 2, 3$, are obtained by requiring that the directional derivatives

$$\mathbf{s}_i^{d_i}(t) = \sum_{k=0}^3 \widehat{\Delta}_k^i B_k^3(t), \quad i = 1, 2, 3,$$

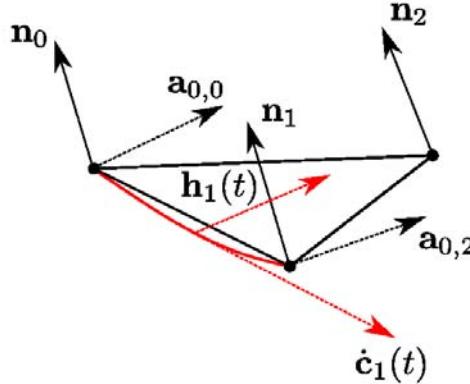


Figure 9: The plane spanned by the tangent vector $\dot{\mathbf{c}}_1(t)$ and the vector $\mathbf{h}_1(t)$.

corresponding to the directions

$$\mathbf{d}_1 = (1, -1/2, -1/2), \mathbf{d}_2 = (-1/2, -1/2, 1) \text{ and } \mathbf{d}_3 = (-1/2, 1, -1/2), \quad (5)$$

lie in the tangent ribbon constructed for the corresponding boundary. Namely,

$$\mathbf{s}_i^{d_i}(t) = \frac{1}{3} \alpha_i(t) \dot{\mathbf{c}}_i(t) + \beta_i(t) \mathbf{h}_i(t), \quad i = 1, 2, 3,$$

where $\alpha_i(t)$ and $\beta_i(t)$ are linear polynomials in t .

Once the points $\mathbf{g}_{i,1}$ and $\mathbf{g}_{i,2}$ are obtained, a simple symmetric blending is used to define the three central control points:

$$\mathbf{b}_{211} = \frac{v\mathbf{g}_{1,1} + w\mathbf{g}_{3,2}}{v+w}, \quad \mathbf{b}_{121} = \frac{u\mathbf{g}_{1,2} + w\mathbf{g}_{2,1}}{u+w}, \quad \mathbf{b}_{112} = \frac{v\mathbf{g}_{2,2} + u\mathbf{g}_{3,1}}{u+v}. \quad (6)$$

2.4. A new cubic Walton and Meek-like Gregory patch

The study of the three methods presented above inspired us to investigate if it is possible to create a new cubic Gregory patch starting from Walton and Meek's construction. In the following it will be called cubicWM patch to distinguish it from the original quartic patch of Walton and Meek.

Let us consider the cubic patch $\mathbf{s}(u, v, w)$ with boundary curves expressed in cubic Bézier form by $\mathbf{c}_i(t)$, $i = 1, 2, 3$. The derivatives of these curves are quadratic Bézier curves defined by (2). If we want to construct a cubic

patch, differently from the quartic patch of Walton and Meek, the directional derivatives $\mathbf{s}_i^{d_i}(t)$ in the directions (5) are quadratic Bézier curves

$$\mathbf{s}_i^{d_i}(t) = \sum_{k=0}^2 \Delta_k^i B_k^2(t), \quad i = 1, 2, 3. \quad (7)$$

The control vectors Δ_k^i are shown in Figure 10. Explicitly, for the edge \mathbf{e}_1 , we obtain

$$\begin{aligned} \Delta_0^1 &= -\frac{1}{2}\mathbf{b}_{300} - \frac{1}{2}\mathbf{b}_{210} + \mathbf{b}_{201}, \\ \Delta_1^1 &= -\frac{1}{2}\mathbf{b}_{210} - \frac{1}{2}\mathbf{b}_{120} + \mathbf{b}_{111}, \\ \Delta_2^1 &= -\frac{1}{2}\mathbf{b}_{120} - \frac{1}{2}\mathbf{b}_{030} + \mathbf{b}_{021}. \end{aligned}$$

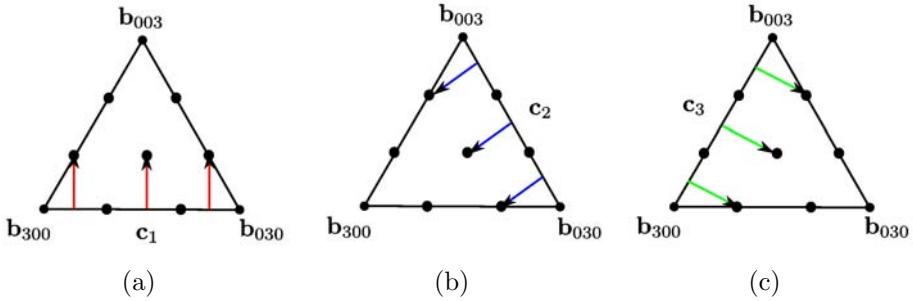


Figure 10: The control vectors Δ_k^i for the three directional derivatives $\mathbf{s}_i^{d_i}(t)$, $i = 1, 2, 3$: (a) $\Delta_0^1, \Delta_1^1, \Delta_2^1$, (b) $\Delta_0^2, \Delta_1^2, \Delta_2^2$ and (c) $\Delta_0^3, \Delta_1^3, \Delta_2^3$.

166

167 As explained in section 2.3, Walton and Meek's method generates a spe-
168 cific tangent ribbon along each boundary curve. Then, they create a surface
169 patch with cross-boundary directional derivatives that lie in that plane to
170 ensure G^1 -continuity with the neighbouring triangles. We choose to define
171 this plane exactly as they proposed, namely as the plane spanned by the
172 tangent vector $\dot{\mathbf{c}}_i(t)$ and the vector $\mathbf{h}_i(t)$ previously defined in equations (2)
173 and (3).

Therefore, the conditions on the final patch control points to ensure G^1 -continuity with the neighbouring triangles are as in Walton and Meek's construction

$$\mathbf{s}_i^{d_i}(t) = \frac{1}{3} \alpha_i(t) \dot{\mathbf{c}}_i(t) + \beta_i(t) \mathbf{h}_i(t), \quad i = 1, 2, 3, \quad (8)$$

174 except that here $\mathbf{s}_i^{d_i}(t)$ are quadratic instead of cubic. In the following, for the
 175 sake of simplicity we consider only the condition on the border corresponding
 176 to $i = 1$. The same construction can be done on borders corresponding to
 177 $i = 2$ and $i = 3$.

178 The simplest choice for the polynomials $\alpha_1(t)$ and $\beta_1(t)$ are two constants
 179 α and β . With this choice, in fact, we obtain three quadratic polynomials in
 180 (8). By substitution of their Bézier forms (7), (??) and (3) in (8), we compare
 181 their control points obtaining three points \mathbf{b}_{111}^1 , \mathbf{b}_{111}^2 and \mathbf{b}_{111}^3 to be blended
 182 to define the interior control point \mathbf{b}_{111} . Unfortunately, this substitution
 183 leads to a system of equations which is not always solvable.

Let us therefore consider linear functions $\alpha_1(t) = \alpha_0^1(1 - t) + \alpha_1^1 t$ and
 $\beta_1(t) = \beta_0^1(1 - t) + \beta_1^1 t$. This means that (8) becomes

$$\sum_{k=0}^2 \Delta_k^1 B_k^2(t) = \left(\sum_{k=0}^1 \alpha_k^1 B_k^1(t) \right) \left(\sum_{k=0}^2 \mathbf{w}_k^1 B_k^2(t) \right) + \left(\sum_{k=0}^1 \beta_k^1 B_k^1(t) \right) \left(\sum_{k=0}^2 \mathbf{a}_k^1 B_k^2(t) \right).$$

By degree elevation of the directional derivative $\mathbf{s}_1^{d_1}(t)$ we obtain cubic polynomials on both sides

$$\sum_{k=0}^3 \tilde{\Delta}_k^1 B_k^3(t) = \sum_{k=0}^1 \sum_{j=0}^2 \frac{\binom{1}{k} \binom{2}{j}}{\binom{3}{k+j}} (\alpha_k^1 \mathbf{w}_j^1 + \beta_k^1 \mathbf{a}_j^1) B_{k+j}^3(t). \quad (9)$$

By comparing the coefficients of the control points of the cubic polynomials in eq. (9) we obtain the following system of equations

$$\begin{aligned} \tilde{\Delta}_0^1 &= \alpha_0^1 \mathbf{w}_0^1 + \beta_0^1 \mathbf{a}_0^1, \\ \tilde{\Delta}_1^1 &= \frac{2}{3} (\alpha_0^1 \mathbf{w}_1^1 + \beta_0^1 \mathbf{a}_1^1) + \frac{1}{3} (\alpha_1^1 \mathbf{w}_0^1 + \beta_1^1 \mathbf{a}_0^1), \\ \tilde{\Delta}_2^1 &= \frac{1}{3} (\alpha_0^1 \mathbf{w}_2^1 + \beta_0^1 \mathbf{a}_2^1) + \frac{2}{3} (\alpha_1^1 \mathbf{w}_1^1 + \beta_1^1 \mathbf{a}_1^1), \\ \tilde{\Delta}_3^1 &= \alpha_1^1 \mathbf{w}_2^1 + \beta_1^1 \mathbf{a}_2^1. \end{aligned}$$

From the first and the last equation we can compute α_0^1 , α_1^1 , β_0^1 and β_1^1 as

$$\begin{aligned} \alpha_0^1 &= \frac{\tilde{\Delta}_0^1 \cdot \mathbf{w}_0^1}{\mathbf{w}_0^1 \cdot \mathbf{w}_0^1}, & \beta_0^1 &= \tilde{\Delta}_0^1 \cdot \mathbf{a}_0^1, \\ \alpha_1^1 &= \frac{\tilde{\Delta}_3^1 \cdot \mathbf{w}_2^1}{\mathbf{w}_2^1 \cdot \mathbf{w}_2^1}, & \beta_1^1 &= \tilde{\Delta}_3^1 \cdot \mathbf{a}_2^1, \end{aligned}$$

184 since $\det(\tilde{\Delta}_0^1, \mathbf{w}_0^1, \mathbf{a}_0^1) = 0$, $\det(\tilde{\Delta}_3^1, \mathbf{w}_2^1, \mathbf{a}_2^1) = 0$, and $\mathbf{w}_0^1 \cdot \mathbf{a}_0^1 = 0$ (see (4)).
185 Once α_0^1 , α_1^1 , β_0^1 and β_1^1 are calculated, the two central equations can be used
186 to compute two interior points \mathbf{b}_{111}^{11} and \mathbf{b}_{111}^{12} . Repeating this procedure for
187 the three borders we obtain six points \mathbf{b}_{111}^{11} , \mathbf{b}_{111}^{12} , \mathbf{b}_{111}^{21} , \mathbf{b}_{111}^{22} , \mathbf{b}_{111}^{31} and \mathbf{b}_{111}^{32} to
188 be blended to define the interior control point \mathbf{b}_{111} , as shown in Figure 2(d).

189 *2.4.1. Cubic boundary curves and blending functions*

190 Once cubic boundary curves are constructed, the six points \mathbf{b}_{111}^{11} , \mathbf{b}_{111}^{12} ,
191 \mathbf{b}_{111}^{21} , \mathbf{b}_{111}^{22} , \mathbf{b}_{111}^{31} and \mathbf{b}_{111}^{32} can be obtained with the procedure described
192 above. These points need to be blended to define the interior control point
193 $\mathbf{b}_{111}(u, v, w)$.

We analysed and compared four different surfaces obtained by using different cubic interpolants for the boundary curves and different blending functions for the central control point. We tested the cubic patch by using the cubic boundary curves proposed in PN triangles [16] and the cubic boundary curves proposed by Walton and Meek for their quartic patch in [14, 15]. As blending functions, instead, we use the PNG1 triangles formula (1), and we define a simpler formula similar to that used by Walton and Meek for the their three interior control points:

$$\mathbf{b}_{111}(u, v, w) = u \left(\frac{v\mathbf{b}_{111}^{11} + w\mathbf{b}_{111}^{32}}{v + w} \right) + v \left(\frac{w\mathbf{b}_{111}^{21} + u\mathbf{b}_{111}^{12}}{w + u} \right) + w \left(\frac{u\mathbf{b}_{111}^{31} + v\mathbf{b}_{111}^{22}}{u + v} \right). \quad (10)$$

194 To summarise we tested the following four different combinations:

195 **cubicPN-B1:** Cubic boundary curves constructed as in PN triangles and
196 blending function defined by (10).

197 **cubicPN-B2:** Cubic boundary curves constructed as in PN triangles and
198 blending function from PNG1 triangles (1).

199 **cubicWM-B1:** Cubic boundary curves constructed as in Walton and Meek
200 and blending function defined by (10).

201 **cubicWM-B2:** Cubic boundary curves constructed as in Walton and Meek
202 and blending function from PNG1 triangles (1).

203 As already pointed out by Mann et al. in their survey [5], the boundary
204 curves play an important role in the shape quality of the interpolating sur-
205 face. In the case of the two Gregory patches presented here, in particular,

206 the interior control points heavily depend on the boundary curves. All the
207 tests described in the next section have been applied to these four differ-
208 ent combinations. These tests showed us that the use of Walton and Meek
209 boundary curves yields surfaces with better shape quality.

210 On the contrary, the blending function for the interior control point does
211 not affect the shape of the surface as much as the boundary curves. But,
212 as shown in section 3.1, it deeply affects the computational cost, as far as
213 the normal computation is concerned. Therefore, in the next section we use
214 cubicWM-B1 for comparison with the other methods in order to keep the
215 patch formulation as simple as possible, while the surface quality the best
216 possible at the lowest computational cost. More details on these tests can be
217 found in [17].

218 3. Comparisons

219 We implemented all the schemes as an Autodesk Maya® plug-in (*MPx-*
220 *HwShaderNode*), based on the plug-in from [12]. The Polygons part of Au-
221 todesk Maya® is a classic polygonal modeller, and lots of low-level and
222 high-level functions are available for surface creation.

223 3.1. Computational costs

224 Before comparing the surface quality of the four schemes, we compare
225 their computational costs. We decided to compute manually the number
226 of scalar additions/subtractions, scalar multiplications and scalar divisions
227 required for the evaluation of the control points $\mathbf{b}_{ijk}(u, v, w)$. In fact, once
228 these control points are computed, the cost for the evaluation of a parametric
229 hybrid patch, a PNG1 triangle and the cubicWM-B1 patch is the same as
230 that of a cubic Bézier triangle, and the evaluation of a Walton and Meek’s
231 patch costs as much as the evaluation of a quartic Bézier triangle. Then, to
232 verify these computational costs in practice, we measured the time required
233 for the tessellation on the CPU by using a 1000 triangles Bunny mesh, tes-
234 sellating every triangle patch into 55 points (tessellation factor $f = 10$), and
235 into 210 points (tessellation factor $f = 20$). In the vertex shader on the GPU,
236 we tessellated the patch into 210 points (tessellation factor $f = 20$), which
237 are handled as OpenGL vertex arrays. As the shading is completely vertex
238 shader-bound, we measured the time for vertex shading and fragment shad-
239 ing together. These measurements were performed in Maya 2008 on a MS

Scheme	Boundary cps			Interior cps			Total		
	add/sub	mult	div	add/sub	mult	div	add/sub	mult	div
Hybrid	36	60	6	4	9	1	40	69	7
PNG1	36	36	6	19	27	4	55	63	10
WM	-	-	-	6	6	3	6	6	3
cubicWM-B1	-	-	-	8	9	3	8	9	3

Table 1: Number of operations required for the evaluation of $\mathbf{b}_{ijk}(u, v, w)$ for each scheme.

240 Windows 7 (64bit) system with Intel P8700 (2.5 GHz) processor and NVidia
 241 Geforce 9600GT (512 MB) mobile graphics with driver version 258.96.

242 Table 1 shows the number of operations required for the evaluation of
 243 the rational blending functions defining the control points for each method.
 244 The Gregory patches have the important advantage that only the interior
 245 control points are blended. Thus the operations required for the evaluation
 246 of the control points in Walton and Meek’s patch and in our cubicWM-B1
 247 are considerably reduced with respect to the other two schemes.

248 In general, the evaluation of a surface point and normal for the quartic
 249 patch is more expensive than for a cubic patch, which makes a difference for
 250 the scalar CPU implementation (not using SIMD extensions). Surprisingly,
 251 our CPU tests in Table 2 show that this is not necessarily the case when
 252 considering rational blend schemes. In fact, contrary to our expectations,
 253 we obtain that for both tessellation factors, cubicWM-B1 is slightly slower
 254 than Walton and Meek’s quartic patch. This is due to the fact that here we
 255 evaluate the point and the real analytic normal of the patch. Even if the
 256 use of a cubic patch, instead of a quartic, allows a faster evaluation of the
 257 point on the surface, the more complicated blending function (10) for six
 258 points yields more expensive derivative formulas than the simpler blending
 259 functions (6) for the quartic patch. On the other hand, on the GPU we
 260 obtain that the point-normal evaluation of our cubicWM-B1 patch is faster
 261 than that of all the other schemes. Here, the control point computation is
 262 performed once on the CPU and is included in the GPU timings. Point and
 263 normal evaluations are then performed on the GPU.

264 The parametric hybrid patch is slower than PNG1 triangles on the CPU,
 265 probably because the construction of its control points is more complex, while
 266 it is faster on the GPU as its blending functions are simpler than those of
 267 PNG1 triangles.

Scheme	CPU				GPU	
	$f = 10$		$f = 20$		$f = 20$	
Hybrid	331ms	3fps	1080ms	0.91fps	38.74ms	25.81fps
PNG1	202ms	4.9fps	730ms	1.37fps	47.14ms	21.21fps
WM	76.9ms	13fps	266ms	3.77fps	22.40ms	44.63fps
cubicWM-B1	83ms	12fps	286ms	3.5fps	19.40ms	51.54fps

Table 2: Time required for the tessellation on the CPU and on the GPU.

268 Therefore, on the CPU hybrid parametric patch's blending functions are
 269 the most expensive, followed by those from PNG1 triangles, cubicWM-B1
 270 and Walton and Meek's patch, while on the GPU cubicWM-B1 performs
 271 best, followed by Walton and Meek's patch, hybrid parametric patch and
 272 PNG1 triangles.

273 *3.2. Sphere and Torus approximation*

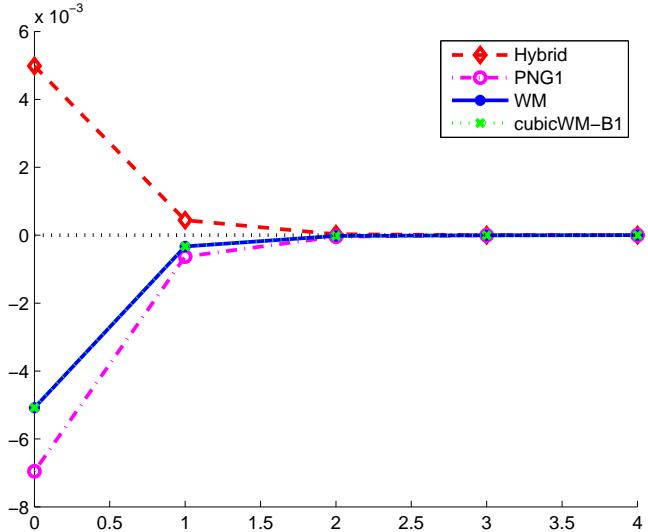
274 In this section we compare the behaviour of the three schemes with respect
 275 to a known surface. We compare the signed distance between the analytic
 276 surface (a sphere and a torus) and the piecewise parametric interpolants
 277 computed by the schemes on a sampling of points from that surface. We are
 278 especially interested in the schemes behaviour when refining the base mesh
 279 of the piecewise parametric surface.

280 The base mesh for the sphere is an icosahedron sampled from a sphere of
 281 radius $r = 1$ centred in the origin. At any refinement step i , it is refined by
 282 means of a 4-split division of the triangles, which results in triangle meshes
 283 with $20 \cdot 4^i$ triangles, i.e., 20 for $i = 0$, 80 for $i = 1$, 320 for $i = 2$, 1280 for
 284 $i = 3$ and 5120 triangles for $i = 4$.

285 The base mesh for the torus of radii $r_1 = 1$ and $r_2 = 0.5$ centred in
 286 the origin is generated by a subdivision of the bivariate parameter domain
 287 $[0, 2\pi) \times [0, 2\pi)$ into j^2 quadrangular regions. After the refinement, the quad-
 288 rangular mesh is triangulated adding the diagonals. This results in $2 \cdot j^2$
 289 triangles at any refinement step j ($j = 1, 2, 3, \dots$).

290 We measure the signed distance between the analytic surface and the
 291 piecewise parametric interpolant along the patch normal for the refinement
 292 steps $i = 0, 1, 2, 3, 4$, in the case of the sphere, and for $j = 5, 10, 15, 20, 25, 35$,
 293 in the case of the torus. Iterations $i = 4$ and $j = 35$, respectively, yield mean
 294 distance values close to zero.

295 Figures 11 and 12 show, respectively, the approximation behaviour of the
 mean signed distance to the sphere and to the torus. Concerning the sphere,



296
 297 Figure 11: Mean signed distance of sphere interpolation depending on the refinement step
 298 i .

299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313 the plot in Figure 11 shows that for all four methods the mean distance tends to zero when refining the mesh. While PNG1 triangles, Walton and Meek's patch and cubicWM-B1 approximate the analytic surface remaining always in the interior, hybrid parametric patches have in all refinement steps positive mean distances. This behaviour is confirmed by the statistical data collected in Table 3 where the maximum signed distances for all methods except hybrid parametric patch are zero, especially for steps $i = 0$ and $i = 1$, confirming that, not only the mean distance, but all the distances collected are always negative. CubicWM-B1 and Walton and Meek's patches have always the smallest standard deviations; whereas, PNG1 triangles have always the biggest, except for $i = 0$. All the mean distances for the four methods decrease with the same order of magnitude except for $i = 4$, where PNG1 triangles have the worst mean distance (behaviour confirmed also by the minimum and maximum values). We compare their absolute values for all the steps in Figure 13. Discarding the sign of the distances, cubicWM-B1 and Walton and Meek's patch have the best approximation behaviour, followed by hybrid parametric patch and PNG1 triangles.

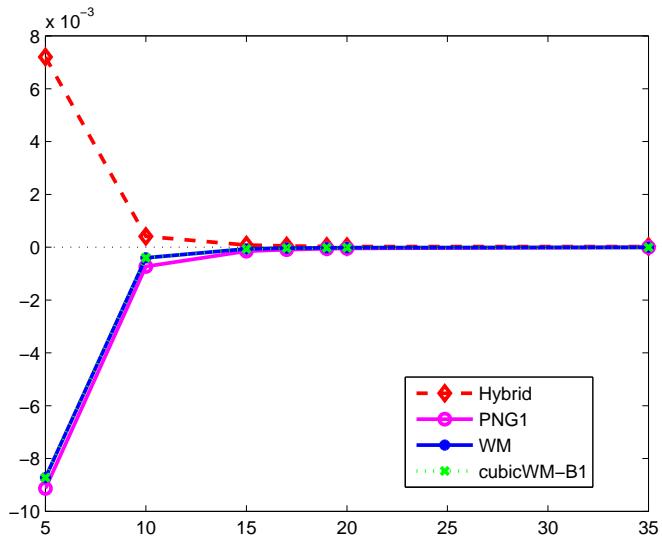


Figure 12: Mean signed distance of torus interpolation depending on the refinement step j .

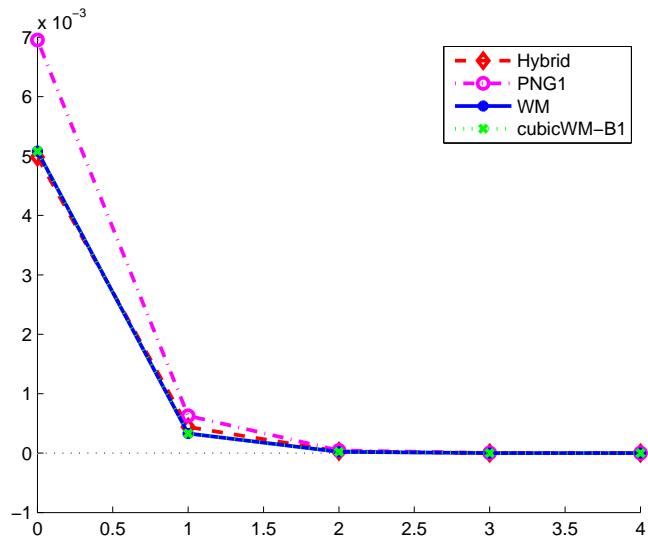


Figure 13: Absolute values of the mean distance of sphere interpolation depending on the refinement step i .

Step	Methods	Min,Max distance	Mean distance \pm std. dev.
$i = 0$	Hybrid	[-0.00274014, 0.0131108]	$0.00498299 \pm 0.00479724$
	PNG1	[-0.0111526, 0]	$-0.00695174 \pm 0.00452694$
	WM	[-0.0105214, 0]	$-0.00507952 \pm 0.00375258$
	cubicWM-B1	[-0.0105212, 0]	$-0.0050795 \pm 0.00375258$
$i = 1$	Hybrid	[-0.000161588, 0.00126064]	$0.000440331 \pm 0.000403261$
	PNG1	[-0.00230867, 0]	$-0.000629614 \pm 0.000615845$
	WM	[-0.000817776, 0]	$-0.000329054 \pm 0.000245696$
	cubicWM-B1	[-0.000817716, 0]	$-0.000329053 \pm 0.000245695$
$i = 2$	Hybrid	$[-9.35793 \cdot 10^{-6}, 8.9407 \cdot 10^{-5}]$	$2.92289 \cdot 10^{-5} \pm 2.57138 \cdot 10^{-5}$
	PNG1	$[-0.00026983, 8.07047 \cdot 10^{-5}]$	$-4.43266 \cdot 10^{-5} \pm 7.07615 \cdot 10^{-5}$
	WM	$[-5.41806 \cdot 10^{-5}, 0]$	$-2.04634 \cdot 10^{-5} \pm 1.51959 \cdot 10^{-5}$
	cubicWM-B1	$[-5.4121 \cdot 10^{-5}, 0]$	$-2.04574 \cdot 10^{-5} \pm 1.51922 \cdot 10^{-5}$
$i = 3$	Hybrid	$[-7.15256 \cdot 10^{-7}, 5.84126 \cdot 10^{-6}]$	$1.82351 \cdot 10^{-6} \pm 1.59932 \cdot 10^{-6}$
	PNG1	$[-6.02603 \cdot 10^{-5}, 3.0756 \cdot 10^{-5}]$	$-3.00776 \cdot 10^{-6} \pm 1.02762 \cdot 10^{-5}$
	WM	$[-3.45707 \cdot 10^{-6}, 0]$	$-1.28954 \cdot 10^{-6} \pm 9.54655 \cdot 10^{-7}$
	cubicWM-B1	$[-3.45707 \cdot 10^{-6}, 0]$	$-1.28604 \cdot 10^{-6} \pm 9.5211 \cdot 10^{-7}$
$i = 4$	Hybrid	$[-2.38419 \cdot 10^{-7}, 5.96046 \cdot 10^{-7}]$	$8.79169 \cdot 10^{-8} \pm 1.11149 \cdot 10^{-7}$
	PNG1	$[-1.46627 \cdot 10^{-5}, 8.10623 \cdot 10^{-6}]$	$-2.0942 \cdot 10^{-7} \pm 1.69522 \cdot 10^{-6}$
	WM	$[-4.17233 \cdot 10^{-7}, 2.38419 \cdot 10^{-7}]$	$-9.45127 \cdot 10^{-8} \pm 9.17229 \cdot 10^{-8}$
	cubicWM-B1	$[-3.57628 \cdot 10^{-7}, 2.38419 \cdot 10^{-7}]$	$-9.28638 \cdot 10^{-8} \pm 8.45791 \cdot 10^{-8}$

Table 3: Statistics of signed distances to the sphere: mean distance with standard deviation (defined as $\sqrt{\frac{1}{n-1} \sum_{k=1}^n (x_k - \bar{x})^2}$, x_k being the distance values) and minimum and maximum distance.

314 The plot in Figure 12 seems to show the same behaviour for the torus
 315 interpolation. But, the statistical data in Table 4 reveal some differences.
 316 Here, minimum and maximum values vary between negative and positive
 317 values for all the methods; PNG1 triangles, Walton and Meek’s patch and
 318 cubicWM-B1 patch have always negative mean distances, while parametric
 319 hybrid patches always positive. PNG1 triangles have in all the steps the
 320 biggest mean distances in absolute value. Except in the first step $j = 5$,
 321 cubicWM-B1 and Walton and Meek’s distances have the smallest values in
 322 absolute value. For the three methods minimum and maximum values show
 323 almost the same behaviours, and decrease with the same order of magnitude.
 324 Nevertheless parametric hybrid distances vary always in a smaller interval.
 325 In fact, parametric hybrid patches have, in general, the smallest standard
 326 deviations.

327 In summary, cubicWM-B1 and Walton and Meek’s patch show almost
 328 identical behaviours and they perform best, followed by the hybrid para-
 329 metric patch, whereas PNG1 triangles exhibits the worst approximation be-
 330 haviour.

331 *3.3. Arbitrary triangle meshes*

332 We now compare the surfaces obtained by the four schemes on arbitrary
 333 triangle meshes with a low triangle count, because, in general, the real-world
 334 use of these methods concerns this kind of meshes.

335 By using highlight lines and Gaussian curvature plots [18] we analysed the
 336 surfaces generated from the following seven meshes: Sphere, Torus, Round-
 337 edCube, Head, Pawn, Bunny and Dinosaur. See Table 5 for statistical
 338 information about these meshes. We chose them because they represent ar-
 339bitrary triangle meshes and also because for some of the schemes they exhibit
 340 certain specialities.

341 We use the exact surface normals $\mathbf{n}(u, v) = \frac{\frac{\partial \mathbf{s}}{\partial u}(u, v) \times \frac{\partial \mathbf{s}}{\partial v}(u, v)}{\left\| \frac{\partial \mathbf{s}}{\partial u}(u, v) \times \frac{\partial \mathbf{s}}{\partial v}(u, v) \right\|}$ for computing
 342 the Gaussian curvature. Table 6 contains the minimum, maximum and mean
 343 values of the Gaussian curvature computed on a dense sampling grid of 210
 344 points per patch, with standard deviation defined as $\sqrt{\frac{1}{n-1} \sum_{k=1}^n (x_k - \bar{x})^2}$.
 345 Since the second order derivatives do not exist in the vertices of the patch,
 346 these data are not taken into account in the statistics and are plotted in
 347 black in the figures. A common scale is used to compare the curvature plots
 348 of the four methods and the maximum and minimum values of each of them
 349 are converted to that scale.

Step	Methods	Min,Max distance	Mean distance \pm std. dev.
$j = 5$	Hybrid	[-0.0227294, 0.0478425]	0.00720392 ± 0.015833
	PNG1	[-0.158901, 0.044207]	$-0.00913514 \pm 0.0326367$
	WM	[-0.0977793, 0.0493978]	$-0.00872526 \pm 0.0304518$
	cubicWM-B1	[-0.0977793, 0.0493978]	$-0.00872526 \pm 0.0304518$
$j = 10$	Hybrid	[-0.00262406, 0.00356019]	$0.000410239 \pm 0.000964081$
	PNG1	[-0.00952291, 0.00411868]	$-0.000726871 \pm 0.00221538$
	WM	[-0.00544271, 0.00396627]	$-0.000399186 \pm 0.00178612$
	cubicWM-B1	[-0.00544268, 0.00396627]	$-0.000399186 \pm 0.00178612$
$j = 15$	Hybrid	[-0.000710934, 0.000884116]	$8.30311 \cdot 10^{-5} \pm 0.000249906$
	PNG1	[-0.00201935, 0.00107235]	$-0.000149719 \pm 0.000488205$
	WM	[-0.00117564, 0.00107831]	$-6.02477 \cdot 10^{-5} \pm 0.000400663$
	cubicWM-B1	[-0.00117561, 0.00107831]	$-6.02466 \cdot 10^{-5} \pm 0.000400662$
$j = 17$	Hybrid	[-0.000484645, 0.0006001]	$5.06274 \cdot 10^{-5} \pm 0.000167361$
	PNG1	[-0.00122964, 0.000724077]	$-9.13885 \cdot 10^{-5} \pm 0.000309585$
	WM	[-0.000749379, 0.000720561]	$-3.39081 \cdot 10^{-5} \pm 0.000259712$
	cubicWM-B1	[-0.000749409, 0.000720561]	$-3.39079 \cdot 10^{-5} \pm 0.000259712$
$j = 19$	Hybrid	[-0.000337839, 0.000417173]	$3.25315 \cdot 10^{-5} \pm 0.000117689$
	PNG1	[-0.000791073, 0.000496805]	$-5.89122 \cdot 10^{-5} \pm 0.00020772$
	WM	[-0.000505209, 0.000505209]	$-2.05269 \cdot 10^{-5} \pm 0.000178293$
	cubicWM-B1	[-0.000505149, 0.000505209]	$-2.05266 \cdot 10^{-5} \pm 0.000178293$
$j = 20$	Hybrid	[-0.000292093, 0.000354946]	$2.6755 \cdot 10^{-5} \pm 0.000100177$
	PNG1	[-0.000647008, 0.000430048]	$-4.78646 \cdot 10^{-5} \pm 0.00017302$
	WM	[-0.000424266, 0.000427842]	$-1.60885 \cdot 10^{-5} \pm 0.000150207$
	cubicWM-B1	[-0.000424266, 0.000427842]	$-1.60887 \cdot 10^{-5} \pm 0.000150205$
$j = 35$	Hybrid	$[-5.30481 \cdot 10^{-5}, 5.91278 \cdot 10^{-5}]$	$2.66562 \cdot 10^{-6} \pm 1.78022 \cdot 10^{-5}$
	PNG1	$[-8.57115 \cdot 10^{-5}, 7.31945 \cdot 10^{-5}]$	$-5.37519 \cdot 10^{-6} \pm 2.57699 \cdot 10^{-5}$
	WM	$[-6.89626 \cdot 10^{-5}, 7.31945 \cdot 10^{-5}]$	$-1.6294 \cdot 10^{-6} \pm 2.50909 \cdot 10^{-5}$
	cubicWM-B1	$[-6.89328 \cdot 10^{-5}, 7.31945 \cdot 10^{-5}]$	$-1.62901 \cdot 10^{-6} \pm 2.50907 \cdot 10^{-5}$

Table 4: Statistics of signed distances to the torus: mean distance with standard deviation (defined as $\sqrt{\frac{1}{n-1} \sum_{k=1}^n (x_k - \bar{x})^2}$, x_k being the distance values) and minimum and maximum distance.

Name	#V/#E/#T	Mean angle normals ± std. dev.	Min,max angle normals	#E convex/concave/inflection
Sphere	12/30/20	0.794654 ± 0.794654	$[0.794654, 2.04327 \cdot 10^{-8}]$	20/0/10
Torus	25/75/50	0.726595 ± 0.0808356	$[0.620812, 0.826384]$	32/7/35
RCube	30/84/56	0.812907 ± 0.136409	$[0.688079, 1]$	42/1/40
Head	102/300/200	0.8214 ± 0.186177	$[-0.0221268, 0.999741]$	106/30/163
Pawn	154/456/304	0.801564 ± 0.236914	$[-0.115779, 0.999559]$	144/32/280
Bunny	502/1500/1000	0.911182 ± 0.113563	$[-0.147974, 0.999985]$	556/71/873
Dinosaur	927/2775/1850	0.935497 ± 0.0966668	$[-0.625247, 0.999996]$	1096/205/1473

Table 5: Statistics of triangle meshes: number of vertices/edges/triangles, angle cosine between vertex and triangle normals (mean \pm standard deviation, minimum and maximum), number of convex, concave, inflection edges.

Mesh	Methods	Min,Max curv	Mean curv \pm std. dev.
Sphere	Hybrid	[0.327537, 1.83937]	0.901277 \pm 0.414196
	PNG1	[0.807412, 1.45757]	1.04739 \pm 0.131043
	WM	[0.768366, 1.20612]	0.971769 \pm 0.123814
	cubicWM-B1	[0.768408, 1.1719]	0.971776 \pm 0.123817
Torus	Hybrid	[-820.956, 63.2143]	-2.50575 \pm 29.3715
	PNG1	[-8.33147, 8.23699]	-0.585947 \pm 2.33862
	WM	[-9.89538, 10.9907]	-0.61217 \pm 2.58268
	cubicWM-B1	[-9.8852, 10.9848]	-0.61218 \pm 2.58269
Cube	Hybrid	[-0.422122, 0.150237]	-0.0479029 \pm 0.123352
	PNG1	[-3.08765, 5.62103]	1.26259 \pm 1.76093
	WM	[-9.90188, 13.1909]	1.49746 \pm 3.27045
	cubicWM-B1	[-9.80683, 13.1662]	1.50137 \pm 3.27251
Head	Hybrid	[-11347, 31374.6]	0.63273 \pm 204.498
	PNG1	[-266.758, 245.246]	0.367094 \pm 6.93173
	WM	[-5327, 19960]	2.04325 \pm 141.829
	cubicWM-B1	[-5173.04, 19957.7]	2.04977 \pm 141.381
Pawn	Hybrid	[-205.12, 5.76324]	-0.0720587 \pm 3.05287
	PNG1	[-20.7914, 78.5121]	0.0699347 \pm 1.59282
	WM	[-618.648, 964.635]	0.143624 \pm 18.6824
	cubicWM-B1	[-543.238, 969.831]	0.152935 \pm 18.5275
Bunny	Hybrid	[-998.402, 239.024]	-0.00863217 \pm 3.26164
	PNG1	[-11.0328, 28.9473]	0.0112989 \pm 0.296384
	WM	[-102.571, 2954.82]	0.0485715 \pm 7.87631
	cubicWM-B1	[-102.584, 2951.82]	0.0486907 \pm 7.8803
Dinosaur	Hybrid	[-144.925, 94.1432]	-0.00141404 \pm 0.487428
	PNG1	[-18.138, 287.879]	0.0042961 \pm 0.65595
	WM	[-1136.1, 195.25]	0.000524591 \pm 2.06327
	cubicWM-B1	[-7.13831, 119.032]	0.00372546 \pm 0.298818

Table 6: Statistics on Gaussian curvature. The mean value for Gaussian curvature (mean \pm standard deviation) and the minimum and maximum value measured from the surfaces.

350 Comparing these statistics for all the meshes, we found that the mean
351 Gaussian curvature is negative for the hybrid parametric patch, except for
352 the Sphere and the Head mesh, while for the other three methods the mean
353 curvature is positive, with again the Torus as exception. Walton and Meek's,
354 cubicWM and parametric hybrid patches have, especially in the Torus and
355 Head mesh, high standard deviations, revealing a more accentuated varia-
356 tion of the curvature with respect to minimum and maximum values. It is
357 surprising that the stability problem of hybrid parametric patches, shown in
358 the following, does not highly affect the curvature values in the other meshes.
359 Again cubicWM-B1 behaves similarly to Walton and Meek's patch, except in
360 the Dinosaur mesh where the curvature does not vary as much as for Walton
361 and Meek's patch since minimum, maximum and standard deviation values
362 are considerably lower.

363 To show the behaviour of the four schemes on well known shapes, we first
364 graphically analyse the sphere and the torus studied in the previous section
365 with $i = 0$ and $j = 5$, respectively. Although according to Table 6 the four
366 methods seem to be faithful to the analytic shape, their plots in Figure 14 and
367 Figure 15 show several differences. In the first line, by comparing the shaded
368 surfaces we find a more oscillating surface for the hybrid parametric method
369 (in particular by looking at the silhouettes) and this behaviour is confirmed
370 by the highlight lines and the curvature plots. More precisely, curvature
371 plots in the sphere reveal that Walton and Meek's and cubicWM-B1 surfaces
372 better simulate the behaviour of a real sphere, while the other two methods
373 exhibit higher curvature variations near the borders of the patches. On the
374 other hand, for the curvature plots of the Torus all four methods present
375 high curvature variations in the regions where zero curvature is expected,
376 but again highlight lines and curvature plots show that the hybrid parametric
377 surface is the worst.

378 As the sphere and the torus, the RoundedCube mesh (Figure 16) and the
379 Head mesh have a small triangle count and a quite high number of inflection
380 edges. As expected we found the same behaviours observed in the sphere
381 and the torus. The surface constructed by the parametric hybrid patches is
382 very wavy, and the statistics confirm this behaviour. On the other hand, the
383 curvature statistics and the highlight lines show that PNG1 triangles yield the
384 surface with the best appearance since the maximum and minimum values
385 are in a smaller range. Besides, although all the surfaces are G^1 continuous,
386 the PNG1 triangles RoundedCube gives the visual impression to be smoother
387 than Walton and Meek's and cubicWM-B1 surfaces.

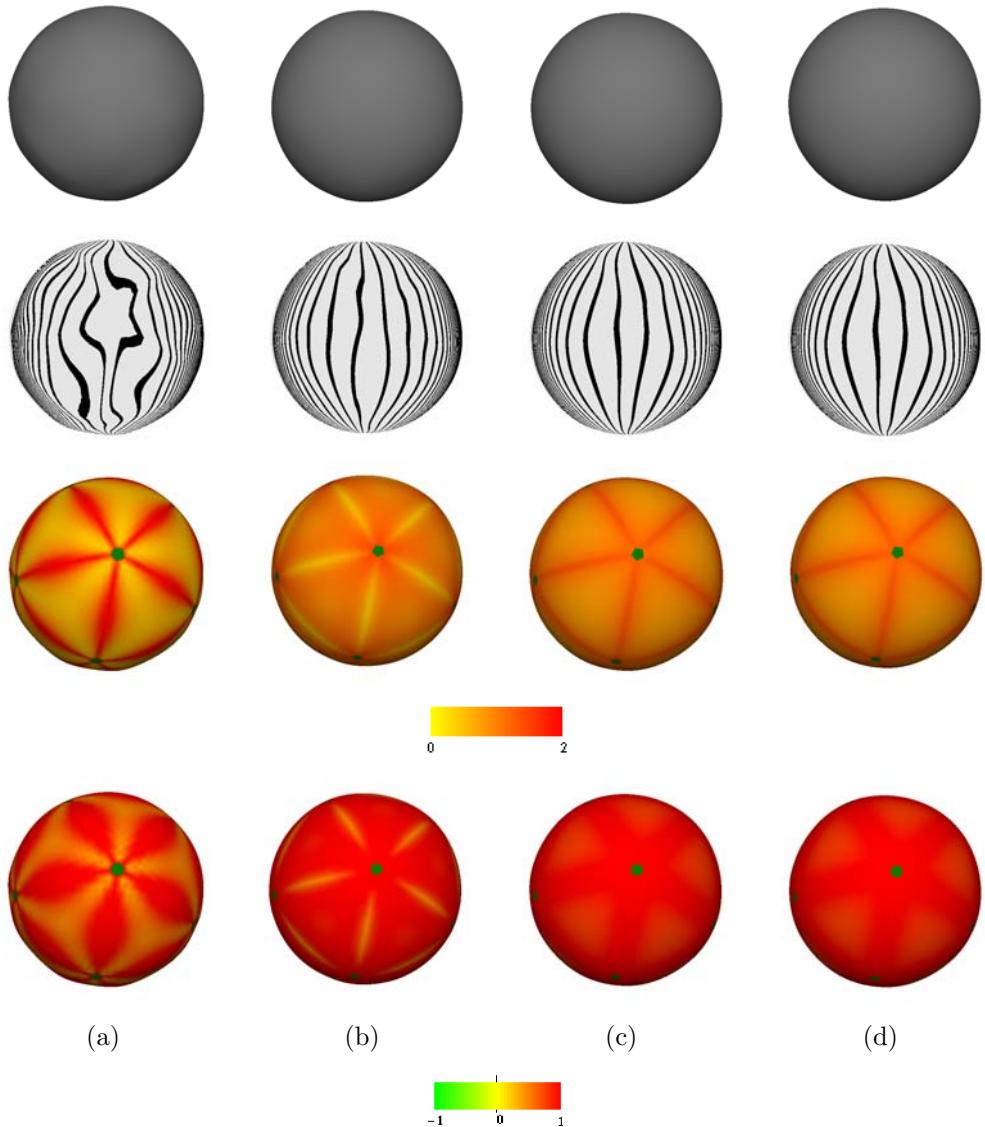


Figure 14: Sphere $i = 0$: surfaces obtained from (a) hybrid parametric patch, (b) PNG1 triangles, (c) Walton and Meek's quartic patch and (d) cubicWM-B1 patch. First row: shaded surfaces; second row: highlight lines; third and fourth row: Gaussian curvature plots with different scale.

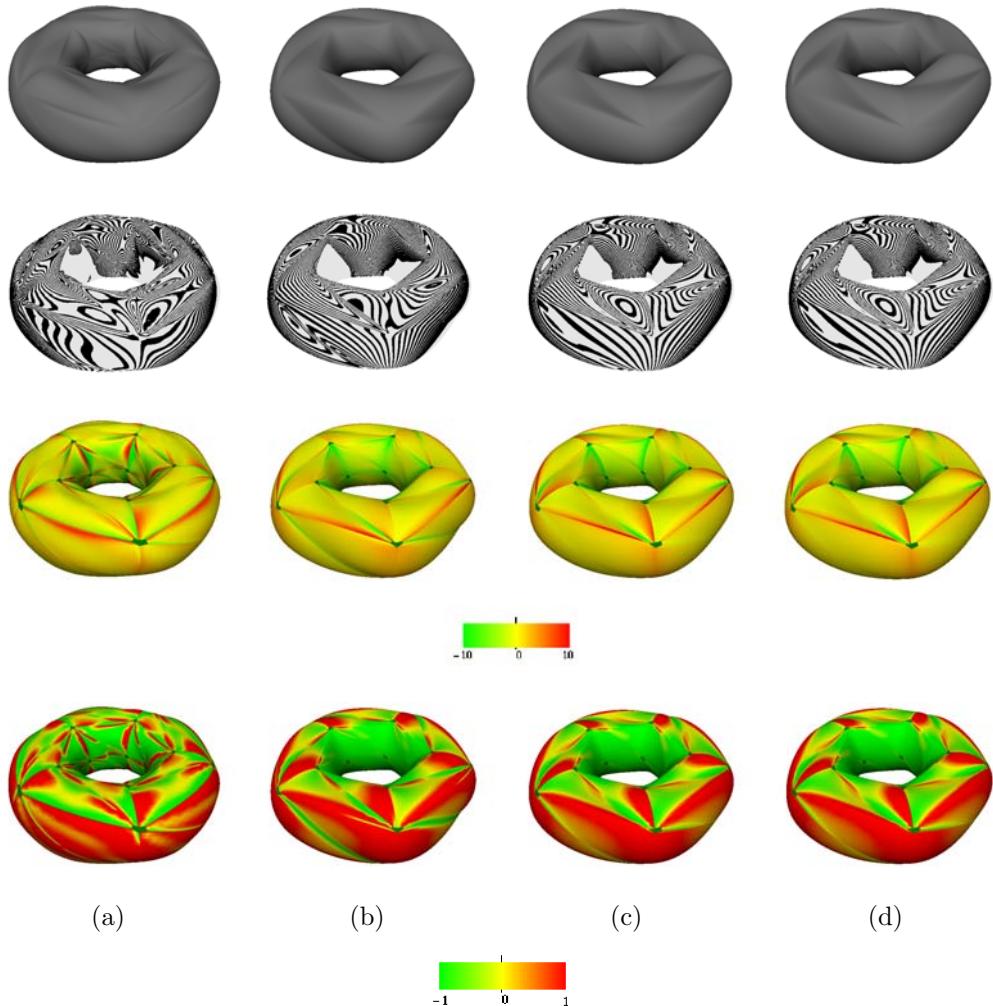


Figure 15: Torus $j = 5$: surfaces obtained from (a) hybrid parametric patch, (b) PNG1 triangles, (c) Walton and Meek's quartic patch and (d) cubicWM-B1 patch. First row: shaded surfaces; second row: highlight lines; third and fourth row: Gaussian curvature plots with different scale.

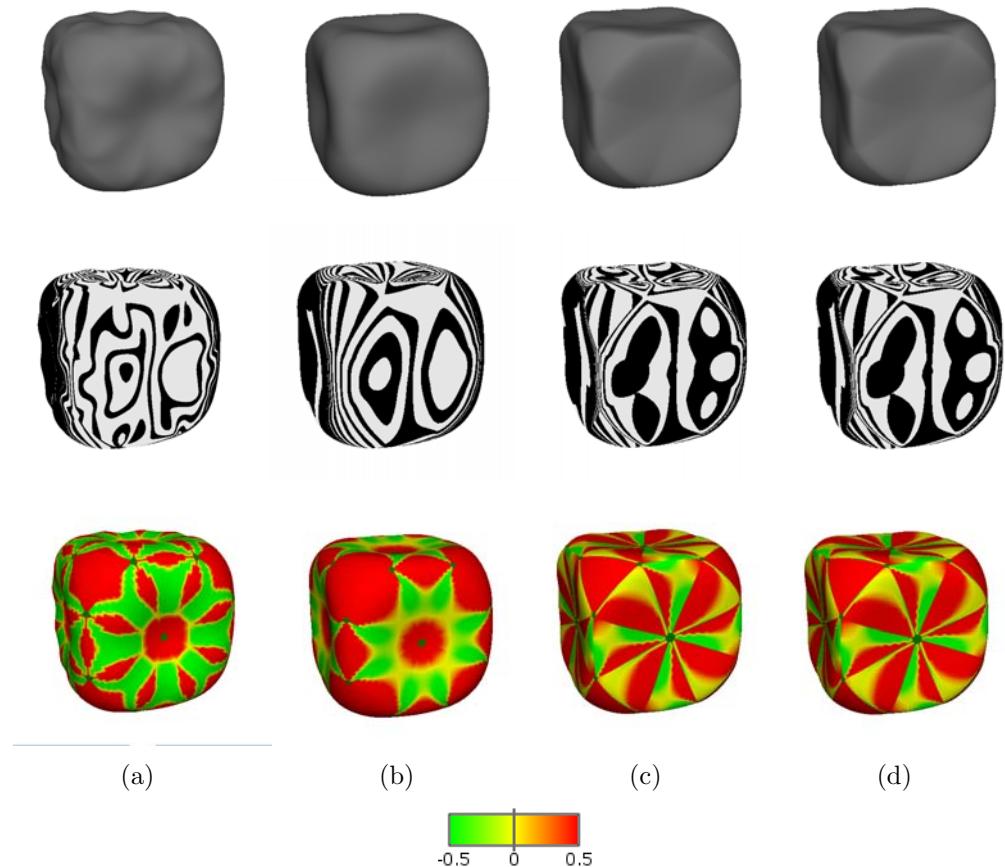


Figure 16: RoundedCube: surfaces obtained from (a) hybrid parametric patch, (b) PNG1 triangles, (c) Walton and Meek's quartic patch and (d) cubicWM-B1 patch. First row: shaded surfaces; second row: highlight lines; third row: Gaussian curvature.

388 When we consider meshes with a higher number of faces, as for example
 389 the Pawn mesh, the stability problem of the parametric hybrid patch related
 390 to the choice of the plane on which the patch pairs are projected, becomes
 391 evident (Figure 17). In this mesh, in particular, the chosen projection plane
 392 is unstable because the normal given in a vertex is perpendicular to the
 393 normal defined by the triangle plane and this yields a zero denominator in
 394 the definition of the control points. For a more detailed discussion on the
 395 possible choices of the projection plane and their consequences we refer the
 396 reader to [10]. By comparing the resulting surfaces of the other three methods
 397 in Figure 18, we notice that they also present artifacts, even if minor when
 compared to the parametric hybrid surface.

Figure 17: The parametric hybrid patch reveals stability problems when applied to the Pawn mesh.

398
 399 Finally, when the four methods are applied to meshes with a higher tri-
 400 angle count, as, for example, Bunny and Dinosaur (respectively 1000 and
 401 1850 faces), they behave differently. On one hand, in Bunny (Figure 19)
 402 PNG1 triangles seems to visually produce the smoothest surface and this is
 403 confirmed by the highlight lines, where those of cubicWM-B1, Walton and
 404 Meek and parametric hybrid surfaces appear more discontinuous and frag-
 405 mented, and by the statistics on the curvature. Surprisingly, the statistics on
 406 the curvature of parametric hybrid patch are not heavily affected from the
 407 stability problem that can be easily remarked on the ear of the Bunny. The
 408 curvature value is, in fact, on average lower than the values of all the other

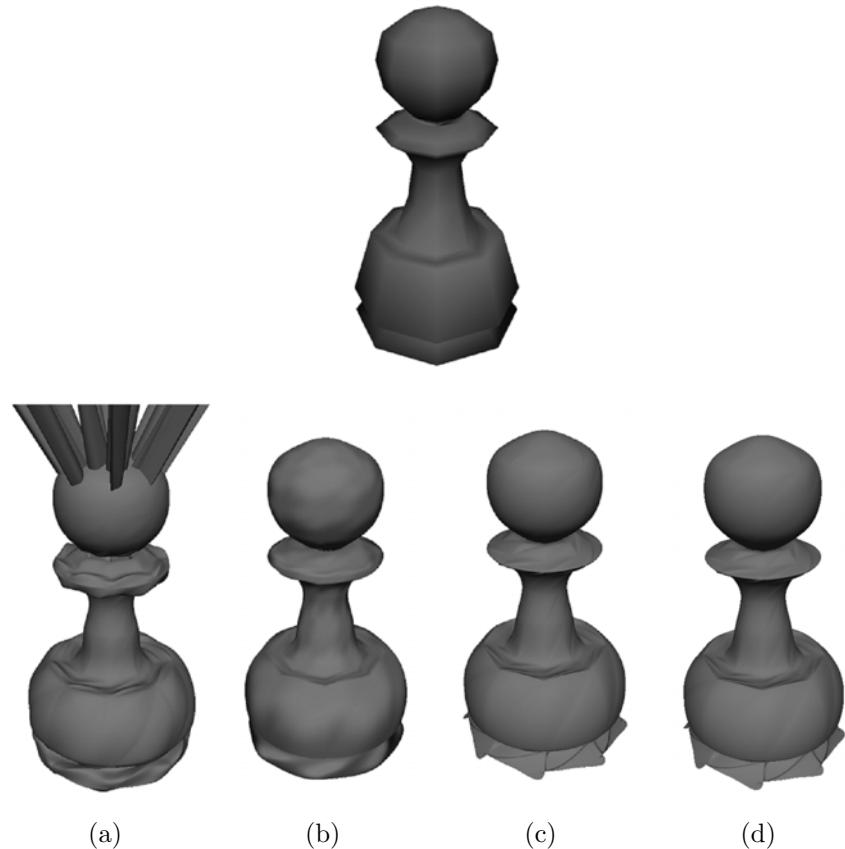


Figure 18: Pawn in columns from left to right: (a) parametric hybrid patch, (b) PNG1 triangles, (c) Walton and Meek's Gregory patch and (d) cubicWM-B1 patch. First row: shaded planar mesh; second row: shaded surfaces.

409 tested meshes, although minimum and maximum values for all the methods,
410 except PNG1 triangles, are high. This means that the curvature strongly
411 deviates from the mean value. In particular, for Walton and Meek's and
412 cubicWM-B1 patches standard deviations are extremely large. On the other
413 hand, Dinosaur's curvature values are surprisingly much lower than those of
414 all the other meshes and the standard deviation values are more acceptable,
415 except for Walton and Meek's patch. A reasonable explanation could be that
416 the parametric hybrid patch on this mesh exhibits less triangles with stability
417 problems than the previous meshes, resulting in better curvature statistics.
418 No more differences can be seen from the shaded surfaces, the highlight lines
419 and the curvature plots, even with a close up on the details.

420 **4. Conclusions**

421 In this article we made a comparison of local parametric G^1 interpolatory
422 schemes that use rational blends to bypass the vertex consistency problem
423 in the construction of the surface. The main emphasis of this comparison is
424 on the computational costs of the different schemes available, as well as on
425 the surface quality, investigated by using well known methods of surface in-
426 terrogation as highlight lines and Gaussian curvature plots. The comparison
427 includes four different schemes based on triangular Bézier patches: hybrid
428 parametric patch and PNG1 triangles of degree 3, Walton and Meek's Gre-
429 gory patch of degree 4. The fourth cubicWM-B1 scheme is a cubic Gregory
430 patch that we proposed inspired by Walton and Meek's construction.

431 The study on the number of operations required to evaluate the control
432 points reveals that Walton and Meek's patch, and consequently cubicWM-
433 B1 patch, have the important advantage that only the interior control points
434 are blended. Furthermore, PNG1 triangles are also penalised by the more
435 complicated blending function for the interior control point. In practice,
436 we verified this assumption by measurements on the time required for the
437 tessellation of the patches on the CPU and on the GPU. Both on the CPU
438 and on the GPU, cubicWM-B1 and Walton and Meek's patches perform best,
439 where Walton and Meek's patch is faster on the CPU and cubicWM patch
440 is faster on the GPU.

441 When analysing the surfaces constructed by the four schemes with respect
442 to a sphere and a torus, the statistics show that Walton and Meek's and
443 cubicWM-B1 patches have the best approximation behaviour, followed by
444 parametric hybrid patches and PNG1 triangles.

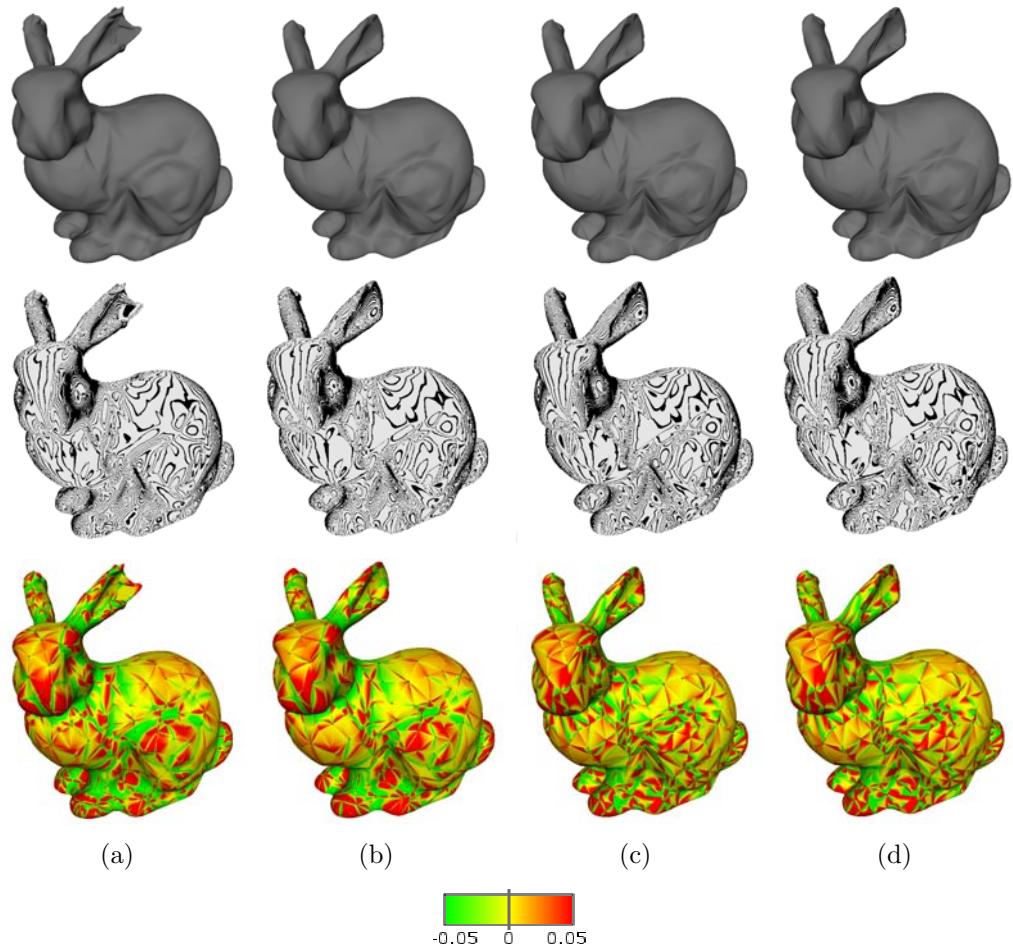


Figure 19: Bunny: surfaces obtained from (a) hybrid parametric patch, (b) PNG1 triangles, (c) Walton and Meek's quartic patch and (d) cubicWM-B1 patch. First row: shaded surfaces; second row: highlight lines; third row: Gaussian curvature.

445 On the contrary, on arbitrary triangle meshes PNG1 triangles give in
446 general the surfaces with the best appearance. Their statistics, indeed, show
447 that their curvature values vary more regularly. Besides, when we increase
448 the number of faces the stability problem of the parametric hybrid patch
449 related to the choice of the plane on which the patch pairs are projected
450 becomes evident. Unfortunately, this fact makes this method practically
451 unusable on meshes with completely arbitrary normals. In many arbitrary
452 triangle meshes analysed, Walton and Meek's and cubicWM-B1 surfaces seem
453 to suffer in a certain sense from flatness of their boundary curves, as the high
454 standard deviation values in the statistics on the curvature confirm.

455 From all our tests we can assert that our cubicWM-B1 patch attains
456 almost identical surfaces to the quartic original Walton and Meek's patch,
457 with lower computational costs on the GPU. In particular, the behaviour
458 of our cubic version is slightly better in sphere and torus approximation, as
459 described in section 3.2.

460 We additionally remark the following important property of our cubicWM-
461 B1 patch and Walton and Meek's Gregory patch. Differently from the other
462 two methods, they do not directly use the triangle neighbour in their con-
463 struction, since the interior control points are constructed by means of tan-
464 gent ribbons that depend only on the boundary curves. This is important in
465 some applications, as, for example, in computer games, where usually stored
466 neighbourhood information is not available.

467 All the results of these tests gave us several subjects and suggestions for
468 future work. First, we want to improve our cubicWM-B1 patch by investi-
469 gating if the use of different cubic boundary curves can yield surfaces that
470 do not suffer from flatness on arbitrary meshes. Second, we believe that also
471 other choices of the function $\mathbf{h}_i(t)$ used to define the plane for the tangent
472 ribbons could be of interest for further investigation.

473 5. Acknowledgements

474 Maria Boschiroli acknowledges the financial support in form of travel al-
475 lowances from French-Italian University within the Da Vinci program
476 (<http://www.universite-franco-italienne.org/>). Christoph Fünfzig acknowl-
477 edges support of the Conseil Régional de Bourgogne in a postdoc fellowship
478 for the 2009/2010 academic year as well as a one month invitation by the
479 LAMAV laboratory at University of Valenciennes, and a three month invita-
480 tion of the University of Valenciennes (IUT) during the 2010/2011 academic

481 year. Lucia Romani acknowledges a one month invitation from University of
482 Valenciennes during the 2010/2011 academic year.

483 **References**

484 [1] M. Boschirolì, C. Fünfzig, L. Romani, G. Albrecht, A comparison of
485 local parametric C^0 Bézier interpolants for triangular meshes, Computers&Graphics 35 (2011) 20–34.

487 [2] G. Farin, Curves and surfaces for CAGD: a practical guide, Morgan
488 Kaufmann Publishers Inc., San Francisco, CA, USA, 5th edition, 2002.

489 [3] J. Peters, Smooth interpolation of a mesh of curves, Constr. Approx. 7
490 (1991) 221–246.

491 [4] M. A. Watkins, Problems in geometric continuity, Comput. Aided
492 Geom. Des. 20 (1988) 499–502.

493 [5] S. Mann, C. Loop, M. Lounsbury, D. Meyers, J. Painter, T. DeRose,
494 K. Sloan, A survey of parametric scattered data fitting using triangular
495 interpolants, in: H. Hagen (Ed.), Curve and surface design, SIAM, 1992,
496 pp. 145–172.

497 [6] L. A. Shirman, C. H. Séquin, Local surface interpolation with Bézier
498 patches, Computer Aided Geometric Design (1987) 279–295.

499 [7] G. M. Nielson, A transfinite, visually continuous, triangular interpolant,
500 in: G. Farin (Ed.), Geometric modeling, SIAM, Philadelphia, PA, 1987,
501 pp. 235–246.

502 [8] J. A. Gregory, Smooth interpolation without twist constraints, in:
503 R. Barnhill, R. Riesenfeld (Eds.), Computer aided geometric design,
504 Academic Press, New York, 1974, pp. 71–87.

505 [9] S. Mann, M. Davidchuk, A parametric hybrid triangular Bézier patch,
506 in: Proceedings of the international conference on Mathematical meth-
507 ods for curves and surfaces II Lillehammer, 1997, Vanderbilt University,
508 Nashville, TN, USA, 1998, pp. 335–342.

509 [10] M. F. Davidchuk, A parametric hybrid triangular Bézier patch, Master’s
510 thesis, University of Waterloo, 1997.

511 [11] T. A. Foley, K. Opitz, Hybrid cubic Bézier triangle patches, in: T. Ly-
 512 che, L. L. Schumaker (Eds.), Mathematical methods in computer aided
 513 geometric design II, Academic Press Professional, Inc., San Diego, CA,
 514 USA, 1992, pp. 275–286.

515 [12] C. Fünfzig, K. Müller, D. Hansford, G. Farin, PNG1 triangles for tan-
 516 gent plane continuous surfaces on the GPU, in: GI '08: Proceedings
 517 of graphics interface 2008, Canadian Information Processing Society,
 518 Toronto, Ont., Canada, 2008, pp. 219–226.

519 [13] D. J. Walton, D. S. Meek, A triangular G^1 patch from boundary curves,
 520 Computer-Aided Design 28 (1996) 113–123.

521 [14] D. J. Walton, D. S. Meek, Point normal interpolation for stereolithog-
 522 raphy modelling, Computers & Graphics 19 (1995) 345–353.

523 [15] D. J. Walton, M. Yeung, Geometric modelling from CT scans for
 524 stereolithography apparatus, in: Z.Tang (Ed.), New Advances in
 525 CAD&Computer Graphics (Proc. CAD/Graphics '93), pp. 417–422.

526 [16] A. Vlachos, J. Peters, C. Boyd, J. L. Mitchell, Curved PN triangles, in:
 527 I3D '01: Proceedings of the 2001 symposium on Interactive 3D graphics,
 528 ACM, New York, NY, USA, 2001, pp. 159–166.

529 [17] M. Boschirolì, Local Parametric Bézier Interpolants for Triangular
 530 Meshes: from Polynomial to Rational Schemes, Ph.D. thesis, 2011. In
 531 preparation.

532 [18] S. Hahmann, A. Belyaev, L. Buse, G. Elber, B. Mourrain, C. Roessl,
 533 Shape interrogation - a state of the art, in: L. De Floriani, M. Spagnuolo
 534 (Eds.), Shape Analysis and Structuring, Springer, 2008, pp. 1–52.