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Abstract

Interpolation of triangular meshes is a subject of great interest in many
computer graphics related applications, as, for example, gaming and realtime
rendering. One of the main approaches to interpolate the positions and nor-
mals of the mesh vertices is the use of parametric triangular Bézier patches.
As it is well known, any method aiming at constructing a parametric, tan-
gent plane (G') continuous surface has to deal with the vertex consistency
problem. In this article, we propose a comparison of three recently appeared
methods that use a particular technique called rational blend to avoid this
problem. Together with these three methods we present a new scheme, a cu-
bic Gregory patch, that has been inspired by one of them. Our comparison
includes an analysis of their computational costs on CPU and GPU, a study
of their capabilities of reproducing analytic surfaces and their response to
different surface interrogation methods on arbitrary triangle meshes with a
low triangle count that actually occur in their real-world use.
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1. Introduction

Triangular meshes, namely meshes in which the faces are triangular and
any number of faces may join at a vertex, are sufficiently general to represent
surfaces of arbitrary genus. For this reason their interpolation is a subject of
great interest in many computer graphics related applications such as gaming
and realtime rendering.

Parametric triangular Bézier patches are a simple geometric primitive
that can be used to interpolate scattered data on triangular meshes while
locally controlling the surface by manipulating its control points. The idea
behind the use of these patches is that each original flat triangle of the input
mesh is replaced by a curved shape, defined as a parametric triangular Bézier
patch interpolating the three vertex positions and the associated normals.

Not surprisingly, every method that tries to solve a data fitting problem
encounters the same main difficulty: dealing with the smoothness of the
surface. In [1] a survey on the existing methods for the construction of
continuous (C°) parametric interpolants on triangular meshes can be found.
These schemes, which construct Bézier patches using only the information
related to the underlying triangle, emerged as attractive solutions responding
to the requirements of resource-limited hardware environments.

However, to be useful for surface design, a parametric data fitting scheme
must produce a smooth surface. From a geometric point of view, the concept
of C' continuity is not suitable to characterise the smoothness of a surface
since a change in the parameterisation of one of two adjacent patches changes
the cross boundary derivatives of that patch, thus destroying the C* conti-
nuity. Therefore, in practice, the concept of tangent plane continuity, also
known as G' continuity, is used (see e.g. [2] for a formal definition of G!
continuity between triangular Bézier patches).
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Constructing two patches that meet with G* continuity is straight-forward.
On the contrary, a complex problem called vertex consistency problem arises
when constructing a closed network of more than two G* joined patches inci-
dent to a vertex [3, 4]. Every scheme aiming at constructing a tangent plane
continuous surface has to cope with this problem. The G* methods proposed
in the literature either bypass it avoiding the computation of the solution of
the associated linear system or find a way to make it solvable.

In [5] a survey of the G*-continuous parametric interpolatory schemes for
triangular meshes proposed up to the beginning of the nineties is provided.
The authors classify several of the most famous methods, like Shirman-Séquin
6], Nielson [7], and triangular Gregory Patch [8], and offer a detailed com-
parison of them.

In the present article, we focus on three methods appeared after this
survey that use a particular technique called rational blends. Together with
these three methods we present a new approach, a cubic Gregory patch that
has been inspired by one of them.

The remainder of the paper article is organised as follows. In section 2,
the rational blend technique is presented in detail followed by an explanation
of the three methods and the presentation of our new cubic scheme. In
section 3, we first analyse their computational costs (section 3.1) and then
compare the schemes by looking at the reproduction of analytic surfaces like
the sphere and the torus (section 3.2). Finally, in section 3.3 we investigate
their response to surface interrogation methods on arbitrary triangle meshes
with a low triangle count, which actually occur in real-world use of these
schemes. To conclude, in section 4 we summarise the main results of our
comparative study.

2. G' rational blend interpolatory schemes

The key idea behind the schemes we are going to present is that each orig-
inal flat triangle of the input mesh can be replaced by a curved shape, namely
a parametric triangular Bézier patch interpolating the three vertex positions
and vertex normals. Therefore, the patch’s control net is constructed only
by means of the point and normal information at the vertices of the input
mesh.

In order to introduce the schemes let us consider a subset of 4 triangles as
illustrated in Figure 1, the central on with vertices po, p1, P2, and respective
unit normal vectors ng, ni, ng, as well as edge vectors e; = p; — pg, €2 =
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Figure 1: Notation for the vertices and respective normals of the input flat triangles.

P2 — P1, €3 = Po — P2- Considering the neighbouring triangle adjacent to
the edge ey, let us use the notation pg; for its remaining vertex and ng; for
its associated normal, and analogously we define p12, nyo with respect to the
edge ey and pgg, noy with respect to the edge e;. Additionally, we refer to
the tangent plane in p;, which is defined by n;, by 7;, ¢ = 0,1,2,01, 12, 20.
Using a triangular network of control points b;jx (i +j+k=n, i,j,k >

. . . . | ; ;
0) and degree-n bivariate Bernstein polynomials By} (u,v,w) = hou'v? w”

(u+v+w = 1), a degree-n triangular Bézier patch is defined by

t(u,v,w) = Z biji By (u, v, w).
i+j+k=n
It maps a triangular domain D C R? to an affine space, typically R?, where
u, v and w are the barycentric coordinates in D.

The approach we survey here is based on the creation of a triangular
Bézier patch by means of rational blends. Multiple triangular Bézier patches
are created such that each patch is G'-continuous to its neighbour along
only one triangle edge. To evaluate the resulting rational blend interpolant
at some parameter values (u,v,w), each of the constructed Bézier patches
is evaluated at these parameter values, then an affine combination of these
points is taken. The coefficients of the affine combination are rational func-
tions of the parameters, hence the name rational blend. Therefore a rational
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blend degree-n triangular Bézier patch is defined by

s(u,v,w) = Z biji(u, v, w) By (u, v, w),
i+j+k=n
where the control points b;jx(u,v,w) are affine combinations of the con-
structed points using rational blending functions.

Each boundary of the resulting interpolant has the tangent plane field of
one of the constructed patches and therefore the patch has G' joins along all
the boundaries. The only points on the boundary that have contributions
from more than one patch are the corners. The two patches that contribute
to tangent plane continuity at the corner will in general have different mixed
second order partial derivatives. Vertex consistency is bypassed by allowing
inconsistent mixed partial second order derivatives at the corner points.

In Figure 2 the points to be blended to define the control points b, ;. (u, v, w)
are shown schematically for the four schemes compared in the next sections.
We review parametric hybrid triangular Bézier patches in section 2.1, PNG1
triangles in section 2.2 and Walton and Meek’s Gregory patch in section 2.3.
Finally, in section 2.4 we propose a new cubic Gregory patch inspired by
Walton and Meek’s patch.

2.1. Parametric hybrid triangular Bézier patches

This first scheme was proposed in [9, 10] and is based on a method intro-
duced in [11] by Foley and Opitz for interpolation of scattered data above a
plane using a functional hybrid cubic Bézier patch.

The idea of Davidchuck and Mann is to “parameterise” this method by
choosing a plane for each triangle pair, project the vertices of the triangle and
its neighbour onto that plane and then perform the functional Foley-Opitz
C' construction on the projected points. In Figure 3 one example of the
projection of a triangle pair is shown. Once a plane is chosen as a natural
parameterisation, five points for each neighbour are constructed using only
the triangle vertices and the associated normals. The control points for the
cubic boundary curve are defined by Hermite interpolation and the Foley-
Opitz cross boundary construction [11] determines the first line of interior
control points. In Figure 4, for example, the five red points constructed from
the edge e; are shown. Thus, finally, three sets of five points bjji 1, bijr2
and by;i 3 are computed, each set representing a C' construction along one
triangle edge. These three sets of points share the same triangle vertices
but, in general, differ in the rest of the boundary and in the interior. Figure
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Figure 2: Points defining the control points b;ji(u, v, w) for (a) Parametric hybrid patch,
(b) PNGI triangles, (¢) Walton and Meek’s Gregory patch and (d) Cubic version of Walton

and Meek’s patch.

Figure 3: Plane used to parameterise neighbouring patch pairs.
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2(a) shows the entire domain control net for the parametric hybrid triangular
Bézier patch.

P2 = boos

po=bspo @ ® p, =bgy
210,1 bi20,1

Figure 4: Five points (in red) are constructed from the edge e;.

These three sets of points are then blended together to define the control
points b (u, v, w). As concerns the control points on the border, they are
obtained by an asymmetric blend. On the edge e;, for example,

(1 — w)v*bgroq + (1 — U)w2b21o,3
(1 —w)o* + (1 — v)w? ’

(1—w)u? bigo1 + (1 — u)w? bi20,2
A= wu+ (1

b210(U, v, w) =

7

b120(u7 v, U)) = _ 'LL)U]Q

using Nielson’s blending functions, firstly used in [7], the central control point
is defined by

bi11(u, v,w) = ap(u, v, w)b111,1 + a1 (u, v, w)b111,2 + as(u, v, w)b111,37

where
ity

titj + tity + tity’

ai(t07t1’t2): 27&]7 27&’1{:7 ]#k

We observe that this construction heavily depends on the plane chosen
for the parameterisation and, as a consequence, this choice is crucial for
controlling the control points’ positions. In particular, the orientation of
the plane is extremely important. Two different planes are proposed in [10].
One failsafe method is to take the plane that is perpendicular to the bisecting
plane of the two neighbouring triangles and that also contains their common

7
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edge. Another possibility is to use the information provided by the normals
at the triangle vertices to construct the plane, by taking, for example, the
plane orthogonal to the average of the normals at the two triangle vertices
on the common border. Although the second construction does not always
guarantee a valid plane, in general it creates better shaped surfaces. In
section 3 we show some examples of meshes exhibiting stability problems

related to an inconvenient choice of this plane (more details can be found in
[10]).

2.2. PNG1 Triangles

PNGI1 triangles [12] are similar only in spirit to the hybrid parametric
patches since cubic triangular Bézier patches for each edge of a triangle are
constructed. Actually, as shown in Figure 2, this scheme differs from the
previously described one, as the points to be blended to define the Bézier
control points are obtained starting from the vertices of the triangle. For
example, the red points in Figure 2(b) are computed using py and 7.

For the sake of simplicity, let us explain how the points are constructed
with respect to the edge ey, i.e., the eight points bagi o, b2o1.1, bo21,0, bo21.1,
b21070, b120,17 blll,po,Ol and b111’p1701, shown in Figure 5. The other pOiIltS are
generated similarly.

P2

b2o1,0 boz1,1
@ [ ]

Po b210,0 b120,1 P1

Figure 5: The eight points bag1,0, b2o1,1, bo21,0, bo21,1, b210,0, b120,1, b111,p,01 and
b111,p,,01 constructed from py and p; with respect to the edge e;.

First, the points p1, p2, and pg; are projected in the direction of ny onto
the tangent plane 7, Figure 6 left, and the points pg, poi1, and po in the
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direction of n; onto the tangent plane 71, Figure 6 right. The result of these
projections are two adjacent triangles Apop;"Ps’, APoP; Py, it the plane 7
and APy p1Py, APy P1Dy; in 71. Subdivision of the edges pop;”, Pops and
pPobg; by factor 1/3 provides a pair of subtriangles (marked in red in Figure
6 left) whose vertices on the edges pop;” and popy’ define, respectively, the
points baigp and bgg; o. Analogously, on 7¢ subdivision of the triangle edges
provides a pair of subtriangles (marked in blue in Figure 6 right) that defines
the points bigp 1 and bgg; ;.

Figure 6: Construction of pOthS b201,0, b210,0, b120,1 and b021,1-

An affine transformation of the triangle Apobag1 0ba1o,o from the tangent
plane 7 into the tangent plane 7, provides the point bgai o (Figure 7(a))
and an affine transformation of the triangle Api1bg211b1201 from 74 into 7
provides the point by 1 (Figure 7(b)).

For the two interior points, let 7.91 be the plane defined by n.g;, where

g1 = b120,1 - b210,0
g = (ny+nre1) X g1

Neo1 = 81 X g2,

nr is the normal of the triangle plane, and nz¢; denotes the normal of
the neighbour triangle plane. As illustrated in Figure 8, a transfer of the
red triangle Apgbagiobaigo from 7 to 7.1 provides the points b1 pg .01,
and a transfer of the blue triangle Apibga11b1201 from 71 to 701, provides

bi11,p,01-



(b)

Figure 7: (a) Affine transformation of the triangle from tangent plane 7 into the tangent
plane 71. (b) Affine transformation of the triangle from tangent plane 7, into the tangent
plane 7.

10
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T bii,p,,01

e

b111,pg,01

Po1

Figure 8: Construction of the middle plane by two adjacent triangle normals and bysg,1 —
b21070 to provide the points b1117p0701 and b1117p1701.

150 Applying the described procedure to the edges e; and e3, provides all the
151 points as schematically grouped and coloured in Figure 2(b).

The blending functions for the final control points b, (u, v, w) are derived
by imposing the conditions to get a G' join across the edges. Again an
asymmetric blend is proposed for the boundary control points. On the edge
e, for example,

1

bglo(u, v, w) = m ((1 - U))2b210,0 + w2b210,2) )
1

blgo(u, v, w) = m ((1 — U))2b120,1 + w2b120,2) 3

and Nielson-like functions for the six interior points yield

1—u)b 1—w)b
b (u, v, w) = uw w( w)b111,py,20 + u( w)b111,py 20 n
uv + uw + vw w—+ u — 2uw
uv (1l — v)b111.py.01 + v(1 — w)bi11p,.01 n
uv + uw + vw U+ v — 2uv
vw U(l — w)b111,p1,12 + UJ(l — U)b1117p2712
UY + uw + vw w4 v — 20w ’

(1)

11
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2.3. Walton and Meek’s Gregory patch

In 1996 Walton and Meek proposed a new quartic Gregory patch in [13].
Walton and Meek’s definition of the patch heavily depends on the construc-
tion of the cubic boundary curves c;(t), i = 1,2, 3, described in two previous
articles [14, 15]. They create a specific tangent ribbon along each boundary
curve and then they generate a surface patch with cross-boundary directional
derivatives that lie in that plane.

A reasonable candidate for this plane is the one spanned by the derivative
of the curve, i.e., the tangent vector

&(t) =3) wiBi(t) (2)

and the vector

hi(t) =Y alBi(t), 0<t<1,i=123 (3)
k=0
where
Wi
a n; ; R
o [woll
. Wi
ay=n 2 (4)
? z' Hwéll
al af) + aj
b flab +ab]l”

with ng = ny. See Figure 9 for an example.

A triangular quartic Gregory patch can now be constructed. The control
points of the quartic boundary curves c; (degree raised from cubic) are used
as control points of the patch boundaries. Let the interior control points
adjacent to a boundary (e.g. byi2 and by with respect to the boundary cor-
responding to e2) be g;1 and g; 2, ¢ = 1,2,3. This implies that each interior
control point is determined twice, once for each boundary it is associated
with, as shown in Figure 2(c). These points g;; and g;o, i = 1,2,3, are
obtained by requiring that the directional derivatives

3
s(t) = > ALBi(t), i=1,2,3,

k=0

12
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Figure 9: The plane spanned by the tangent vector ¢;(¢) and the vector hy(t).

corresponding to the directions
d; =(1,-1/2,-1/2), dy = (—1/2,—-1/2,1) and d3 = (—1/2,1,—-1/2), (5)

lie in the tangent ribbon constructed for the corresponding boundary. Namely,

. 1 ) .
s{'(t) = gea(t)a(t) + Ait)hi(t), =1,2,3,
where «;(t) and (;(t) are linear polynomials in ¢.
Once the points g;; and g; o are obtained, a simple symmetric blending
is used to define the three central control points:

U811 + W32 b — ugi 2 + wgo 1 by — U822 + U3 1 (6)
— by =——, bjg = ——mm.

bor: =
2l U+ w U+ w u-+v

2.4. A new cubic Walton and Meek-like Gregory patch

The study of the three methods presented above inspired us to investigate
if it is possible to create a new cubic Gregory patch starting from Walton
and Meek’s construction. In the following it will be called cubicWM patch
to distinguish it from the original quartic patch of Walton and Meek.

Let us consider the cubic patch s(u, v, w) with boundary curves expressed
in cubic Bézier form by c;(t), i = 1,2,3. The derivatives of these curves
are quadratic Bézier curves defined by (2). If we want to construct a cubic

13
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patch, differently from the quartic patch of Walton and Meek, the directional
derivatives s%(t) in the directions (5) are quadratic Bézier curves

2
sii(t) =Y ALBt), i=1,23. (7)
k=0

The control vectors A% are shown in Figure 10. Explicitly, for the edge e;,
we obtain

1 1
A(l) = —=bsgy — =baig + bao,
2 2
Al = — 1b — 1b +b
1 — 2 210 9 120 111,
1 1 1
A = ——bia — =bogzo + boar.
2 2
boos booa boos
Co C3
b3go c boso  baoco boso  b3oo bozo
(a) (b) (c)

Figure 10: The control vectors Af for the three directional derivatives sfl t),i=1,2,3:
(a) A}, Al ALl (b) A2, A2, A2 and (c) A3, A3, A3.

As explained in section 2.3, Walton and Meek’s method generates a spe-
cific tangent ribbon along each boundary curve. Then, they create a surface
patch with cross-boundary directional derivatives that lie in that plane to
ensure G'-continuity with the neighbouring triangles. We choose to define
this plane exactly as they proposed, namely as the plane spanned by the
tangent vector ¢;(t) and the vector h;(¢) previously defined in equations (2)
and (3).

Therefore, the conditions on the final patch control points to ensure G*-
continuity with the neighbouring triangles are as in Walton and Meek’s con-
struction

S5(0) = S () + B0 (), i=1.23 (®)

14
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except that here sfi (t) are quadratic instead of cubic. In the following, for the
sake of simplicity we consider only the condition on the border corresponding
to ¢ = 1. The same construction can be done on borders corresponding to
t=2andi=3.

The simplest choice for the polynomials «;(t) and (31(t) are two constants
a and . With this choice, in fact, we obtain three quadratic polynomials in
(8). By substitution of their Bézier forms (7), (??) and (3) in (8), we compare
their control points obtaining three points bl,;, b?, and b3, to be blended
to define the interior control point by;;. Unfortunately, this substitution
leads to a system of equations which is not always solvable.

Let us therefore consider linear functions a;(t) = (1 —t) + ajt and
Bi(t) = B3(1 —t) + Bit. This means that (8) becomes

S ALB () — (z azB;a)) (zsz,z<t>)+(z B;i&i(ﬂ) (z azB,zu)) |

By degree elevation of the directional derivative s{*(¢) we obtain cubic poly-
nomials on both sides

Z NCHOEDSSS ({)3(]')) (abw! + Blab) BY,(1). (9)
k+7j

k=0 j=0

By comparing the coefficients of the control points of the cubic polynomials
in eq. (9) we obtain the following system of equations

1 _
A = agw; + B)ay,

~ 2 1
Af = 3(O‘0W1 + Byay) + 3(041“’0 + Biay),

~ 1
A% = 3( Wy ‘1’5032)

1
A3 = 0‘1W2 + 5132

2
3(041""1 + Biay),

From the first and the last equation we can compute o, o, 8§ and ] as

Al wl

1 0 0 1 1

ao — 1 1 /80 A 'a.o7
WO ’WO
Al-wl

CY% = f f? 61 Al ’ a%v
W2 'W2
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since det(&é,wé,aé) = 0, det(&%,w%,aé) = 0, and w} - aj = 0 (see (4)).
Once o, af, A3 and 3] are calculated, the two central equations can be used
to compute two interior points b}, and bi%. Repeating this procedure for
the three borders we obtain six points bil,, b2, b2l b b and b to
be blended to define the interior control point by, as shown in Figure 2(d).

2.4.1. Cubic boundary curves and blending functions

Once cubic boundary curves are constructed, the six points bil;, bi?,,
b4,, b¥,, b3l and b2, can be obtained with the procedure described
above. These points need to be blended to define the interior control point
bi11(u, v, w).

We analysed and compared four different surfaces obtained by using dif-
ferent cubic interpolants for the boundary curves and different blending func-
tions for the central control point. We tested the cubic patch by using the
cubic boundary curves proposed in PN triangles [16] and the cubic boundary
curves proposed by Walton and Meek for their quartic patch in [14, 15]. As
blending functions, instead, we use the PNG1 triangles formula (1), and we
define a simpler formula similar to that used by Walton and Meek for the
their three interior control points:

blll(u (% w) = U M ‘I‘U M _|_w M
s Uy v+ w W+ u Ut v .
(10)

To summarise we tested the following four different combinations:

cubicPN-B1: Cubic boundary curves constructed as in PN triangles and
blending function defined by (10).

cubicPN-B2: Cubic boundary curves constructed as in PN triangles and
blending function from PNG1 triangles (1).

cubicWM-B1: Cubic boundary curves constructed as in Walton and Meek
and blending function defined by (10).

cubicWM-B2: Cubic boundary curves constructed as in Walton and Meek
and blending function from PNGI1 triangles (1).

As already pointed out by Mann et al. in their survey [5], the boundary
curves play an important role in the shape quality of the interpolating sur-
face. In the case of the two Gregory patches presented here, in particular,

16
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the interior control points heavily depend on the boundary curves. All the
tests described in the next section have been applied to these four differ-
ent combinations. These tests showed us that the use of Walton and Meek
boundary curves yields surfaces with better shape quality.

On the contrary, the blending function for the interior control point does
not affect the shape of the surface as much as the boundary curves. But,
as shown in section 3.1, it deeply affects the computational cost, as far as
the normal computation is concerned. Therefore, in the next section we use
cubicWM-B1 for comparison with the other methods in order to keep the
patch formulation as simple as possible, while the surface quality the best

possible at the lowest computational cost. More details on these tests can be
found in [17].

3. Comparisons

We implemented all the schemes as an Autodesk Maya®) plug-in (MPz-
HuwShaderNode), based on the plug-in from [12]. The Polygons part of Au-
todesk Maya@®) is a classic polygonal modeller, and lots of low-level and
high-level functions are available for surface creation.

3.1. Computational costs

Before comparing the surface quality of the four schemes, we compare
their computational costs. We decided to compute manually the number
of scalar additions/subtractions, scalar multiplications and scalar divisions
required for the evaluation of the control points by (u, v, w). In fact, once
these control points are computed, the cost for the evaluation of a parametric
hybrid patch, a PNG1 triangle and the cubicWM-B1 patch is the same as
that of a cubic Bézier triangle, and the evaluation of a Walton and Meek’s
patch costs as much as the evaluation of a quartic Bézier triangle. Then, to
verify these computational costs in practice, we measured the time required
for the tessellation on the CPU by using a 1000 triangles Bunny mesh, tes-
sellating every triangle patch into 55 points (tessellation factor f = 10), and
into 210 points (tessellation factor f = 20). In the vertex shader on the GPU,
we tessellated the patch into 210 points (tessellation factor f = 20), which
are handled as OpenGL vertex arrays. As the shading is completely vertex
shader-bound, we measured the time for vertex shading and fragment shad-
ing together. These measurements were performed in Maya 2008 on a MS
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Scheme Boundary cps Interior cps Total
add/sub mult div | add/sub mult div | add/sub mult div
Hybrid 36 60 6 4 9 1 40 69 7
PNG1 36 36 6 19 27 4 55 63 10
WM - - - 6 6 3 6 6 3
cubicWM-B1 - - - 8 9 3 8 9 3

Table 1: Number of operations required for the evaluation of b;;(u, v, w) for each scheme.

Windows 7 (64bit) system with Intel P8700 (2.5 GHz) processor and NVidia
Geforce 9600GT (512 MB) mobile graphics with driver version 258.96.

Table 1 shows the number of operations required for the evaluation of
the rational blending functions defining the control points for each method.
The Gregory patches have the important advantage that only the interior
control points are blended. Thus the operations required for the evaluation
of the control points in Walton and Meek’s patch and in our cubicWM-B1
are considerably reduced with respect to the other two schemes.

In general, the evaluation of a surface point and normal for the quartic
patch is more expensive than for a cubic patch, which makes a difference for
the scalar CPU implementation (not using SIMD extensions). Surprisingly,
our CPU tests in Table 2 show that this is not necessarily the case when
considering rational blend schemes. In fact, contrary to our expectations,
we obtain that for both tessellation factors, cubicWM-B1 is slightly slower
than Walton and Meek’s quartic patch. This is due to the fact that here we
evaluate the point and the real analytic normal of the patch. Even if the
use of a cubic patch, instead of a quartic, allows a faster evaluation of the
point on the surface, the more complicated blending function (10) for six
points yields more expensive derivative formulas than the simpler blending
functions (6) for the quartic patch. On the other hand, on the GPU we
obtain that the point-normal evaluation of our cubicWM-B1 patch is faster
than that of all the other schemes. Here, the control point computation is
performed once on the CPU and is included in the GPU timings. Point and
normal evaluations are then performed on the GPU.

The parametric hybrid patch is slower than PNG1 triangles on the CPU,
probably because the construction of its control points is more complex, while
it is faster on the GPU as its blending functions are simpler than those of
PNGI1 triangles.
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Scheme CPU GPU
f=10 f=20 f=20
Hybrid 331ms  3fps | 1080ms 0.91fps | 38.74ms 25.81fps
PNG1 202ms  4.9fps | 730ms 1.37fps | 47.14ms 21.21fps
WM 76.9ms 13fps | 266ms 3.77fps | 22.40ms 44.63fps
cubicWM-B1 | 83ms  12fps | 286ms  3.5fps | 19.40ms 51.54fps

Table 2: Time required for the tessellation on the CPU and on the GPU.

Therefore, on the CPU hybrid parametric patch’s blending functions are
the most expensive, followed by those from PNGI1 triangles, cubicWM-B1
and Walton and Meek’s patch, while on the GPU cubicWM-B1 performs
best, followed by Walton and Meek’s patch, hybrid parametric patch and
PNGT1 triangles.

3.2. Sphere and Torus approzimation

In this section we compare the behaviour of the three schemes with respect
to a known surface. We compare the signed distance between the analytic
surface (a sphere and a torus) and the piecewise parametric interpolants
computed by the schemes on a sampling of points from that surface. We are
especially interested in the schemes behaviour when refining the base mesh
of the piecewise parametric surface.

The base mesh for the sphere is an icosahedron sampled from a sphere of
radius 7 = 1 centred in the origin. At any refinement step ¢, it is refined by
means of a 4-split division of the triangles, which results in triangle meshes
with 20 - 4% triangles, i.e., 20 for ¢ = 0, 80 for ¢ = 1, 320 for i = 2, 1280 for
1 = 3 and 5120 triangles for i = 4.

The base mesh for the torus of radii 1 = 1 and ro = 0.5 centred in
the origin is generated by a subdivision of the bivariate parameter domain
[0,27) x [0, 27) into j2 quadrangular regions. After the refinement, the quad-
rangular mesh is triangulated adding the diagonals. This results in 2 - 52
triangles at any refinement step j (7 =1,2,3,...).

We measure the signed distance between the analytic surface and the
piecewise parametric interpolant along the patch normal for the refinement
steps 7 = 0,1,2, 3,4, in the case of the sphere, and for j = 5,10, 15, 20, 25, 35,
in the case of the torus. Iterations i = 4 and j = 35, respectively, yield mean
distance values close to zero.
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Figures 11 and 12 show, respectively, the approximation behaviour of the
mean signed distance to the sphere and to the torus. Concerning the sphere,

x 10
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Figure 11: Mean signed distance of sphere interpolation depending on the refinement step
7.

the plot in Figure 11 shows that for all four methods the mean distance tends
to zero when refining the mesh. While PNG1 triangles, Walton and Meek’s
patch and cubicWM-B1 approximate the analytic surface remaining always
in the interior, hybrid parametric patches have in all refinement steps pos-
itive mean distances. This behaviour is confirmed by the statistical data
collected in Table 3 where the maximum signed distances for all methods
except hybrid parametric patch are zero, especially for steps i = 0 and ¢ = 1,
confirming that, not only the mean distance, but all the distances collected
are always negative. CubicWM-B1 and Walton and Meek’s patches have al-
ways the smallest standard deviations; whereas, PNG1 triangles have always
the biggest, except for i = 0. All the mean distances for the four methods
decrease with the same order of magnitude except for i = 4, where PNG1
triangles have the worst mean distance (behaviour confirmed also by the min-
imum and maximum values). We compare their absolute values for all the
steps in Figure 13. Discarding the sign of the distances, cubicWM-B1 and
Walton and Meek’s patch have the best approximation behaviour, followed
by hybrid parametric patch and PNG1 triangles.
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Figure 12: Mean signed distance of torus interpolation depending on the refinement step
j.
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Figure 13: Absolute values of the mean distance of sphere interpolation depending on the
refinement step 1.
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Step Methods Min,Max distance Mean distance + std. dev.
Hybrid [-0.00274014, 0.0131108] 0.00498299 + 0.00479724
i~ 0 PNG1 [-0.0111526, 0] -0.00695174 4 0.00452694
- WM [-0.0105214, 0] -0.00507952 + 0.00375258
cubicWM-B1 [-0.0105212, 0] -0.0050795 + 0.00375258
Hybrid [-0.000161588, 0.00126064] 0.000440331 + 0.000403261
i1 PNG1 [-0.00230867, 0] -0.000629614 + 0.000615845
WM [-0.000817776, O] -0.000329054 + 0.000245696
cubicWM-B1 [-0.000817716, O] -0.000329053 + 0.000245695
Hybrid [-9.35793-107°, 8.9407-107°] | 2.92289-10~° £ 2.57138-107°
P PNG1 [-0.00026983, 8.07047-107°] | -4.43266-107° + 7.07615-107°
WM [-5.41806-1075, 0] -2.04634-107° + 1.51959-10°
cubicWM-B1 [-5.4121-1072, 0] -2.04574-107° + 1.51922.107°
Hybrid [7.15256-10~7, 5.84126-107°] | 1.82351-107% £ 1.59932-10~°
P PNG1 [-6.02603-107°, 3.0756-107°] | -3.00776-10~% + 1.02762-10~°
WM [-3.45707-1079, 0] -1.28954-1076 + 9.54655-1077
cubicWM-B1 [-3.45707-1075, 0] -1.28604-107% 4+ 9.5211-10~7
Hybrid [-2.38419-1077, 5.96046-10~7] | 8.79169-10~° £ 1.11149-10~"
P PNG1 [1.46627-107°, 8.10623-107%] | -2.0942-10~7 4 1.69522-10~°
- WM [-4.17233-1077, 2.38419-1077] | -9.45127-10~8 + 9.17229-10~8
cubicWM-B1 | [-3.57628-1077, 2.38419-10~7] | -9.28638-10~% + 8.45791-10~8

Table 3: Statistics of signed distances to the sphere: mean distance with standard devi-

ation (defined as \/ L > (@r — T)?, z;; being the distance values) and minimum and
maximum distance.
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The plot in Figure 12 seems to show the same behaviour for the torus
interpolation. But, the statistical data in Table 4 reveal some differences.
Here, minimum and maximum values vary between negative and positive
values for all the methods; PNGI triangles, Walton and Meek’s patch and
cubicWM-B1 patch have always negative mean distances, while parametric
hybrid patches always positive. PNGI1 triangles have in all the steps the
biggest mean distances in absolute value. Except in the first step j = 5,
cubicWM-B1 and Walton and Meek’s distances have the smallest values in
absolute value. For the three methods minimum and maximum values show
almost the same behaviours, and decrease with the same order of magnitude.
Nevertheless parametric hybrid distances vary always in a smaller interval.
In fact, parametric hybrid patches have, in general, the smallest standard
deviations.

In summary, cubicWM-B1 and Walton and Meek’s patch show almost
identical behaviours and they perform best, followed by the hybrid para-
metric patch, whereas PNG1 triangles exhibits the worst approximation be-
haviour.

3.8. Arbitrary triangle meshes

We now compare the surfaces obtained by the four schemes on arbitrary
triangle meshes with a low triangle count, because, in general, the real-world
use of these methods concerns this kind of meshes.

By using highlight lines and Gaussian curvature plots [18] we analysed the
surfaces generated from the following seven meshes: Sphere, Torus, Round-
edCube, Head, Pawn, Bunny and Dinousaur. See Table 5 for statistical
information about these meshes. We chose them because they represent ar-
bitrary triangle meshes and also because for some of the schemes they exhibit

certain specialities.
85 (uv) x 28 (u,w)

We use the exact surface normals n(u, v) = 3¢ for computing

o Hg—u(u,v)xg—f} u,v)H
the Gaussian curvature. Table 6 contains the minimum, maximum and mean
values of the Gaussian curvature computed on a dense sampling grid of 210

points per patch, with standard deviation defined as \/ ﬁ Y opy (@ — )2

Since the second order derivatives do not exist in the vertices of the patch,
these data are not taken into account in the statistics and are plotted in
black in the figures. A common scale is used to compare the curvature plots
of the four methods and the maximum and minimum values of each of them
are converted to that scale.
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Step Methods Min,Max distance Mean distance + std. dev.
Hybrid [-0.0227294, 0.0478425] 0.00720392 + 0.015833
s PNG1 [-0.158901, 0.044207] -0.00913514 + 0.0326367
)= WM [-0.0977793, 0.0493978] -0.00872526 + 0.0304518
cubicWM-B1 [-0.0977793, 0.0493978] -0.00872526 + 0.0304518
Hybrid [-0.00262406, 0.00356019] 0.000410239 + 0.000964081
=10 PNG1 [-0.00952291, 0.00411868] -0.000726871 + 0.00221538
WM [-0.00544271, 0.00396627] -0.000399186 + 0.00178612
cubicWM-B1 |  [-0.00544268, 0.00396627) -0.000399186 + 0.00178612
Hybrid [-0.000710934, 0.000884116] | 8.30311-10~° + 0.000249906
15 PNG1 [-0.00201935, 0.00107235] -0.000149719 + 0.000488205
)= WM [-0.00117564, 0.00107831] -6.02477-107° £+ 0.000400663
cubicWM-B1 | [-0.00117561, 0.00107831] -6.02466-10~° + 0.000400662
Hybrid [-0.000484645, 0.0006001] 5.06274-10° 4 0.000167361
i=17 PNG1 [-0.00122964, 0.000724077] | -9.13885-10~° £ 0.000309585
WM [-0.000749379, 0.000720561] | -3.39081-107° 4 0.000259712
cubicWM-B1 | [-0.000749409, 0.000720561] | -3.39079-10~5 4 0.000259712
Hybrid [-0.000337839, 0.000417173] | 3.25315-10~° + 0.000117689
19 PNG1 [-0.000791073, 0.000496805] | -5.89122-10~° + 0.00020772
J= WM [-0.000505209, 0.000505209] | -2.05269-10~° 4 0.000178293
cubicWM-B1 | [-0.000505149, 0.000505209] | -2.05266-10~° 4 0.000178293
Hybrid [-0.000292093, 0.000354946] 2.6755-10~° + 0.000100177
i=20 PNG1 [-0.000647008, 0.000430048] | -4.78646-10~° + 0.00017302
WM [-0.000424266, 0.000427842] | -1.60885-10° 4 0.000150207
cubicWM-B1 | [-0.000424266, 0.000427842] | -1.60887-10~° 4 0.000150205
Hybrid [-5.30481-107°, 5.91278-10~° | 2.66562-10~° + 1.78022-107°
s PNG1 [-8.57115-107°, 7.31945-107°] | -5.37519-107% £ 2.57699-10°
J WM [6.89626-107°, 7.31945-107°] | -1.6294-10~°% + 2.50909-10~°
cubicWM-B1 | [-6.89328-107°, 7.31945-107°] | -1.62901-1075 4 2.50907-10~°

Table 4: Statistics of signed distances to the torus: mean distance with standard devia-

tion (defined as \/ LS (zx — T)?, o being the distance values) and minimum and

maximum distance.

24




Name

#V/#E/#T

Mean angle normals

Min,max angle normals

#E convex/concave/inflection

+ std. dev.

. 12/30/20 0.794654 £ 0.794654 | [0.794654,2.04327 - 10’8] 20/0/10
Sphere
° 25/75/50 | 0.726595 £ 0.0808356 |  [0.620812, 0.826384] 32/7/35
Torus
. 30/84/56 0.812907 £+ 0.136409 [0.688079, 1] 42/1/40
RCube

102/300,/200 0.8214 + 0.186177 [—0.0221268,0.999741] 106/30/163
x 154/456/304 0.801564 + 0.236914 [—0.115779,0.999559] 144/32/280
Pawn
5 502/1500/1000 | 0.911182 4+ 0.113563 [—0.147974,0.999985] 556/71/873
Bunny
d. 927/2775/1850 | 0.935497 & 0.0966668 | [—0.625247,0.999996] 1096,/205,/1473

Dinosaur

Table 5: Statistics of triangle meshes: number of vertices/edges/triangles, angle cosine be-
tween vertex and triangle normals (mean + standard deviation, minimum and maximum),
number of convex, concave, inflection edges.2




Mesh Methods Min,Max curv Mean curv =+ std. dev.
Hybrid [0.327537, 1.83937] 0.901277 £+ 0.414196
Sphere PNG1 [0.807412, 1.45757] 1.04739 £+ 0.131043
WM [0.768366, 1.20612] 0.971769 + 0.123814
cubicWM-B1 [0.768408, 1.1719] 0.971776 £ 0.123817
Hybrid [-820.956, 63.2143| —2.50575 4+ 29.3715
Torus PNG1 [-8.33147, 8.23699] -0.585947 £ 2.33862
WM [-9.89538, 10.9907] -0.61217 £ 2.58268
cubicWM-B1 [-9.8852, 10.9848] -0.61218 + 2.58269
Hybrid [-0.422122, 0.150237] -0.0479029 + 0.123352
Cube PNG1 [-3.08765, 5.62103] 1.26259 £+ 1.76093
WM [-9.90188, 13.1909] 1.49746 + 3.27045
cubicWM-B1 | [-9.80683, 13.1662] 1.50137 £ 3.27251
Hybrid [-11347, 31374.6] 0.63273 £ 204.498
Head PNG1 [-266.758, 245.246] 0.367094 £+ 6.93173
WM [-5327, 19960] 2.04325 + 141.829
cubicWM-B1 | [-5173.04, 19957.7] 2.04977 + 141.381
Hybrid [-205.12, 5.76324 -0.0720587 + 3.05287
Pawn PNG1 [-20.7914, 78.5121] 0.0699347 + 1.59282
WM [-618.648, 964.635] 0.143624 + 18.6824
cubicWM-B1 | [-543.238, 969.831] 0.152935 £ 18.5275
Hybrid [-998.402, 239.024] -0.00863217 £ 3.26164
Bunny PNG1 [-11.0328, 28.9473] 0.0112989 + 0.296384
WM [-102.571, 2954.82] 0.0485715 + 7.87631
cubicWM-B1 | [-102.584, 2951.82] 0.0486907 + 7.8803
Hybrid [-144.925, 94.1432 -0.00141404 + 0.487428
Dinosar PNG1 [-18.138, 287.879] 0.0042961 + 0.65595
WM [-1136.1, 195.25] 0.000524591 + 2.06327
cubicWM-B1 | [-7.13831, 119.032] 0.00372546 £ 0.298818

Table 6: Statistics on Gaussian curvature. The mean value for Gaussian curvature (mean
+ standard deviation) and the minimum and maximum value measured from the surfaces.

26



350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

Comparing these statistics for all the meshes, we found that the mean
Gaussian curvature is negative for the hybrid parametric patch, except for
the Sphere and the Head mesh, while for the other three methods the mean
curvature is positive, with again the Torus as exception. Walton and Meek’s,
cubicWM and parametric hybrid patches have, especially in the Torus and
Head mesh, high standard deviations, revealing a more accentuated varia-
tion of the curvature with respect to minimum and maximum values. It is
surprising that the stability problem of hybrid parametric patches, shown in
the following, does not highly affect the curvature values in the other meshes.
Again cubicWM-B1 behaves similarly to Walton and Meek’s patch, except in
the Dinosaur mesh where the curvature does not vary as much as for Walton
and Meek’s patch since minimum, maximum and standard deviation values
are considerably lower.

To show the behaviour of the four schemes on well known shapes, we first
graphically analyse the sphere and the torus studied in the previous section
with i = 0 and 7 = 5, respectively. Although according to Table 6 the four
methods seem to be faithful to the analytic shape, their plots in Figure 14 and
Figure 15 show several differences. In the first line, by comparing the shaded
surfaces we find a more oscillating surface for the hybrid parametric method
(in particular by looking at the silhouettes) and this behaviour is confirmed
by the highlight lines and the curvature plots. More precisely, curvature
plots in the sphere reveal that Walton and Meek’s and cubicWM-B1 surfaces
better simulate the behaviour of a real sphere, while the other two methods
exhibit higher curvature variations near the borders of the patches. On the
other hand, for the curvature plots of the Torus all four methods present
high curvature variations in the regions where zero curvature is expected,
but again highlight lines and curvature plots show that the hybrid parametric
surface is the worst.

As the sphere and the torus, the RoundedCube mesh (Figure 16) and the
Head mesh have a small triangle count and a quite high number of inflection
edges. As expected we found the same behaviours observed in the sphere
and the torus. The surface constructed by the parametric hybrid patches is
very wavy, and the statistics confirm this behaviour. On the other hand, the
curvature statistics and the highlight lines show that PNG1 triangles yield the
surface with the best appearance since the maximum and minimum values
are in a smaller range. Besides, although all the surfaces are G' continuous,

the PNG1 triangles RoundedCube gives the visual impression to be smoother
than Walton and Meek’s and cubicWM-B1 surfaces.
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Figure 14: Sphere i = 0: surfaces obtained from (a) hybrid parametric patch, (b) PNG1
triangles, (¢) Walton and Meek’s quartic patch and (d) cubicWM-B1 patch. First row:
shaded surfaces; second row: highlight lines; third and fourth row: Gaussian curvature
plots with different scale.
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Figure 15: Torus j = 5: surfaces obtained from (a) hybrid parametric patch, (b) PNG1
triangles, (c¢) Walton and Meek’s quartic patch and (d) cubicWM-B1 patch. First row:
shaded surfaces; second row: highlight lines; third and fourth row: Gaussian curvature
plots with different scale.
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05 o] 0.5

Figure 16: RoundedCube: surfaces obtained from (a) hybrid parametric patch, (b) PNG1
triangles, (c¢) Walton and Meek’s quartic patch and (d) cubicWM-B1 patch. First row:
shaded surfaces; second row: highlight lines; third row: Gaussian curvature.
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When we consider meshes with a higher number of faces, as for example
the Pawn mesh, the stability problem of the parametric hybrid patch related
to the choice of the plane on which the patch pairs are projected, becomes
evident (Figure 17). In this mesh, in particular, the chosen projection plane
is unstable because the normal given in a vertex is perpendicular to the
normal defined by the triangle plane and this yields a zero denominator in
the definition of the control points. For a more detailed discussion on the
possible choices of the projection plane and their consequences we refer the
reader to [10]. By comparing the resulting surfaces of the other three methods
in Figure 18, we notice that they also present artifacts, even if minor when
compared to the parametric hybrid surface.

Figure 17: The parametric hybrid patch reveals stability problems when applied to the
Pawn mesh.

Finally, when the four methods are applied to meshes with a higher tri-
angle count, as, for example, Bunny and Dinosaur (respectively 1000 and
1850 faces), they behave differently. On one hand, in Bunny (Figure 19)
PNGT1 triangles seems to visually produce the smoothest surface and this is
confirmed by the highlight lines, where those of cubicWM-B1, Walton and
Meek and parametric hybrid surfaces appear more discontinuous and frag-
mented, and by the statistics on the curvature. Surprisingly, the statistics on
the curvature of parametric hybrid patch are not heavily affected from the
stability problem that can be easily remarked on the ear of the Bunny. The
curvature value is, in fact, on average lower than the values of all the other
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(a) (b) (c) (d)

Figure 18: Pawn in columns from left to right: (a) parametric hybrid patch, (b) PNG1
triangles, (c) Walton and Meek’s Gregory patch and (d) cubicWM-B1 patch. First row:
shaded planar mesh; second row: shaded surfaces.
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tested meshes, although minimum and maximum values for all the methods,
except PNGI1 triangles, are high. This means that the curvature strongly
deviates from the mean value. In particular, for Walton and Meek’s and
cubicWM-B1 patches standard deviations are extremely large. On the other
hand, Dinosaur’s curvature values are surprisingly much lower than those of
all the other meshes and the standard deviation values are more acceptable,
except for Walton and Meek’s patch. A reasonable explanation could be that
the parametric hybrid patch on this mesh exhibits less triangles with stability
problems than the previous meshes, resulting in better curvature statistics.
No more differences can be seen from the shaded surfaces, the highlight lines
and the curvature plots, even with a close up on the details.

4. Conclusions

In this article we made a comparison of local parametric G interpolatory
schemes that use rational blends to bypass the vertex consistency problem
in the construction of the surface. The main emphasis of this comparison is
on the computational costs of the different schemes available, as well as on
the surface quality, investigated by using well known methods of surface in-
terrogation as highlight lines and Gaussian curvature plots. The comparison
includes four different schemes based on triangular Bézier patches: hybrid
parametric patch and PNG1 triangles of degree 3, Walton and Meek’s Gre-
gory patch of degree 4. The fourth cubicWM-B1 scheme is a cubic Gregory
patch that we proposed inspired by Walton and Meek’s construction.

The study on the number of operations required to evaluate the control
points reveals that Walton and Meek’s patch, and consequently cubicWM-
B1 patch, have the important advantage that only the interior control points
are blended. Furthermore, PNG1 triangles are also penalised by the more
complicated blending function for the interior control point. In practice,
we verified this assumption by measurements on the time required for the
tessellation of the patches on the CPU and on the GPU. Both on the CPU
and on the GPU, cubicWM-B1 and Walton and Meek’s patches perform best,
where Walton and Meek’s patch is faster on the CPU and cubicWM patch
is faster on the GPU.

When analysing the surfaces constructed by the four schemes with respect
to a sphere and a torus, the statistics show that Walton and Meek’s and
cubicWM-B1 patches have the best approximation behaviour, followed by
parametric hybrid patches and PNGI1 triangles.
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Figure 19: Bunny: surfaces obtained from (a) hybrid parametric patch, (b) PNG1 trian-
gles, (¢) Walton and Meek’s quartic patch and (d) cubicWM-B1 patch. First row: shaded
surfaces; second row: highlight lines; third row: Gaussian curvature.
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On the contrary, on arbitrary triangle meshes PNG1 triangles give in
general the surfaces with the best appearance. Their statistics, indeed, show
that their curvature values vary more regularly. Besides, when we increase
the number of faces the stability problem of the parametric hybrid patch
related to the choice of the plane on which the patch pairs are projected
becomes evident. Unfortunately, this fact makes this method practically
unusable on meshes with completely arbitrary normals. In many arbitrary
triangle meshes analysed, Walton and Meek’s and cubicWM-B1 surfaces seem
to suffer in a certain sense from flatness of their boundary curves, as the high
standard deviation values in the statistics on the curvature confirm.

From all our tests we can assert that our cubicWM-B1 patch attains
almost identical surfaces to the quartic original Walton and Meek’s patch,
with lower computational costs on the GPU. In particular, the behaviour
of our cubic version is slightly better in sphere and torus approximation, as
described in section 3.2.

We additionally remark the following important property of our cubicWM-
B1 patch and Walton and Meek’s Gregory patch. Differently from the other
two methods, they do not directly use the triangle neighbour in their con-
struction, since the interior control points are constructed by means of tan-
gent ribbons that depend only on the boundary curves. This is important in
some applications, as, for example, in computer games, where usually stored
neighbourhood information is not available.

All the results of these tests gave us several subjects and suggestions for
future work. First, we want to improve our cubicWM-B1 patch by investi-
gating if the use of different cubic boundary curves can yield surfaces that
do not suffer from flatness on arbitrary meshes. Second, we believe that also
other choices of the function h;(¢) used to define the plane for the tangent
ribbons could be of interest for further investigation.
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