
G1 rational blend interpolatory schemes:

a comparative study

Maria Boschirolia,b,∗, Christoph Fünfzigc, Lucia Romanib, Gudrun Albrechta

aUniv Lille Nord de France, UVHC, LAMAV-CGAO, FR no. 2956,
Le Mont Houy, F-59313 Valenciennes, France

bDipartimento di Matematica e Applicazioni, Università di Milano-Bicocca,
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Abstract

Interpolation of triangular meshes is a subject of great interest in many
computer graphics related applications, as, for example, gaming and realtime
rendering. One of the main approaches to interpolate the positions and nor-
mals of the mesh vertices is the use of parametric triangular Bézier patches.
As it is well known, any method aiming at constructing a parametric, tan-
gent plane (G1) continuous surface has to deal with the vertex consistency
problem. In this article, we propose a comparison of three recently appeared
methods that use a particular technique called rational blend to avoid this
problem. Together with these three methods we present a new scheme, a cu-
bic Gregory patch, that has been inspired by one of them. Our comparison
includes an analysis of their computational costs on CPU and GPU, a study
of their capabilities of reproducing analytic surfaces and their response to
different surface interrogation methods on arbitrary triangle meshes with a
low triangle count that actually occur in their real-world use.
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1. Introduction1

Triangular meshes, namely meshes in which the faces are triangular and2

any number of faces may join at a vertex, are sufficiently general to represent3

surfaces of arbitrary genus. For this reason their interpolation is a subject of4

great interest in many computer graphics related applications such as gaming5

and realtime rendering.6

Parametric triangular Bézier patches are a simple geometric primitive7

that can be used to interpolate scattered data on triangular meshes while8

locally controlling the surface by manipulating its control points. The idea9

behind the use of these patches is that each original flat triangle of the input10

mesh is replaced by a curved shape, defined as a parametric triangular Bézier11

patch interpolating the three vertex positions and the associated normals.12

Not surprisingly, every method that tries to solve a data fitting problem13

encounters the same main difficulty: dealing with the smoothness of the14

surface. In [1] a survey on the existing methods for the construction of15

continuous (C0) parametric interpolants on triangular meshes can be found.16

These schemes, which construct Bézier patches using only the information17

related to the underlying triangle, emerged as attractive solutions responding18

to the requirements of resource-limited hardware environments.19

However, to be useful for surface design, a parametric data fitting scheme20

must produce a smooth surface. From a geometric point of view, the concept21

of C1 continuity is not suitable to characterise the smoothness of a surface22

since a change in the parameterisation of one of two adjacent patches changes23

the cross boundary derivatives of that patch, thus destroying the C1 conti-24

nuity. Therefore, in practice, the concept of tangent plane continuity, also25

known as G1 continuity, is used (see e.g. [2] for a formal definition of G1
26

continuity between triangular Bézier patches).27
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Constructing two patches that meet withG1 continuity is straight-forward.28

On the contrary, a complex problem called vertex consistency problem arises29

when constructing a closed network of more than two G1 joined patches inci-30

dent to a vertex [3, 4]. Every scheme aiming at constructing a tangent plane31

continuous surface has to cope with this problem. The G1 methods proposed32

in the literature either bypass it avoiding the computation of the solution of33

the associated linear system or find a way to make it solvable.34

In [5] a survey of the G1-continuous parametric interpolatory schemes for35

triangular meshes proposed up to the beginning of the nineties is provided.36

The authors classify several of the most famous methods, like Shirman-Séquin37

[6], Nielson [7], and triangular Gregory Patch [8], and offer a detailed com-38

parison of them.39

In the present article, we focus on three methods appeared after this40

survey that use a particular technique called rational blends. Together with41

these three methods we present a new approach, a cubic Gregory patch that42

has been inspired by one of them.43

The remainder of the paper article is organised as follows. In section 2,44

the rational blend technique is presented in detail followed by an explanation45

of the three methods and the presentation of our new cubic scheme. In46

section 3, we first analyse their computational costs (section 3.1) and then47

compare the schemes by looking at the reproduction of analytic surfaces like48

the sphere and the torus (section 3.2). Finally, in section 3.3 we investigate49

their response to surface interrogation methods on arbitrary triangle meshes50

with a low triangle count, which actually occur in real-world use of these51

schemes. To conclude, in section 4 we summarise the main results of our52

comparative study.53

2. G1 rational blend interpolatory schemes54

The key idea behind the schemes we are going to present is that each orig-55

inal flat triangle of the input mesh can be replaced by a curved shape, namely56

a parametric triangular Bézier patch interpolating the three vertex positions57

and vertex normals. Therefore, the patch’s control net is constructed only58

by means of the point and normal information at the vertices of the input59

mesh.60

In order to introduce the schemes let us consider a subset of 4 triangles as61

illustrated in Figure 1, the central on with vertices p0, p1, p2, and respective62

unit normal vectors n0, n1, n2, as well as edge vectors e1 = p1 − p0, e2 =63
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Figure 1: Notation for the vertices and respective normals of the input flat triangles.

p2 − p1, e3 = p0 − p2. Considering the neighbouring triangle adjacent to64

the edge e1, let us use the notation p01 for its remaining vertex and n01 for65

its associated normal, and analogously we define p12, n12 with respect to the66

edge e2 and p20, n20 with respect to the edge e3. Additionally, we refer to67

the tangent plane in pi, which is defined by ni, by τ i, i = 0, 1, 2, 01, 12, 20.68

Using a triangular network of control points bijk (i+ j + k = n, i, j, k >
0) and degree-n bivariate Bernstein polynomials Bn

ijk(u, v, w) =
n!

i!j!k!
uivjwk

(u+ v + w = 1), a degree-n triangular Bézier patch is defined by

t(u, v, w) =
∑

i+j+k=n

bijkB
n
ijk(u, v, w).

It maps a triangular domain D ⊂ R2 to an affine space, typically R3, where69

u, v and w are the barycentric coordinates in D.70

The approach we survey here is based on the creation of a triangular
Bézier patch by means of rational blends. Multiple triangular Bézier patches
are created such that each patch is G1-continuous to its neighbour along
only one triangle edge. To evaluate the resulting rational blend interpolant
at some parameter values (u, v, w), each of the constructed Bézier patches
is evaluated at these parameter values, then an affine combination of these
points is taken. The coefficients of the affine combination are rational func-
tions of the parameters, hence the name rational blend. Therefore a rational
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blend degree-n triangular Bézier patch is defined by

s(u, v, w) =
∑

i+j+k=n

bijk(u, v, w)B
n
ijk(u, v, w),

where the control points bijk(u, v, w) are affine combinations of the con-71

structed points using rational blending functions.72

Each boundary of the resulting interpolant has the tangent plane field of73

one of the constructed patches and therefore the patch has G1 joins along all74

the boundaries. The only points on the boundary that have contributions75

from more than one patch are the corners. The two patches that contribute76

to tangent plane continuity at the corner will in general have different mixed77

second order partial derivatives. Vertex consistency is bypassed by allowing78

inconsistent mixed partial second order derivatives at the corner points.79

In Figure 2 the points to be blended to define the control points bijk(u, v, w)80

are shown schematically for the four schemes compared in the next sections.81

We review parametric hybrid triangular Bézier patches in section 2.1, PNG182

triangles in section 2.2 and Walton and Meek’s Gregory patch in section 2.3.83

Finally, in section 2.4 we propose a new cubic Gregory patch inspired by84

Walton and Meek’s patch.85

2.1. Parametric hybrid triangular Bézier patches86

This first scheme was proposed in [9, 10] and is based on a method intro-87

duced in [11] by Foley and Opitz for interpolation of scattered data above a88

plane using a functional hybrid cubic Bézier patch.89

The idea of Davidchuck and Mann is to “parameterise” this method by90

choosing a plane for each triangle pair, project the vertices of the triangle and91

its neighbour onto that plane and then perform the functional Foley-Opitz92

C1 construction on the projected points. In Figure 3 one example of the93

projection of a triangle pair is shown. Once a plane is chosen as a natural94

parameterisation, five points for each neighbour are constructed using only95

the triangle vertices and the associated normals. The control points for the96

cubic boundary curve are defined by Hermite interpolation and the Foley-97

Opitz cross boundary construction [11] determines the first line of interior98

control points. In Figure 4, for example, the five red points constructed from99

the edge e1 are shown. Thus, finally, three sets of five points bijk,1, bijk,2100

and bijk,3 are computed, each set representing a C1 construction along one101

triangle edge. These three sets of points share the same triangle vertices102

but, in general, differ in the rest of the boundary and in the interior. Figure103
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(a) (b)

(c) (d)

Figure 2: Points defining the control points bijk(u, v, w) for (a) Parametric hybrid patch,
(b) PNG1 triangles, (c) Walton and Meek’s Gregory patch and (d) Cubic version of Walton
and Meek’s patch.

Figure 3: Plane used to parameterise neighbouring patch pairs.
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2(a) shows the entire domain control net for the parametric hybrid triangular104

Bézier patch.

Figure 4: Five points (in red) are constructed from the edge e1.

105

These three sets of points are then blended together to define the control
points bijk(u, v, w). As concerns the control points on the border, they are
obtained by an asymmetric blend. On the edge e1, for example,

b210(u, v, w) =
(1− w)v2b210,1 + (1− v)w2b210,3

(1− w)v2 + (1− v)w2
,

b120(u, v, w) =
(1− w)u2b120,1 + (1− u)w2b120,2

(1− w)u2 + (1− u)w2
;

using Nielson’s blending functions, firstly used in [7], the central control point
is defined by

b111(u, v, w) = a0(u, v, w)b111,1 + a1(u, v, w)b111,2 + a2(u, v, w)b111,3,

where

ai(t0, t1, t2) =
tjtk

titj + titk + tjtk
, i ̸= j, i ̸= k, j ̸= k.

We observe that this construction heavily depends on the plane chosen106

for the parameterisation and, as a consequence, this choice is crucial for107

controlling the control points’ positions. In particular, the orientation of108

the plane is extremely important. Two different planes are proposed in [10].109

One failsafe method is to take the plane that is perpendicular to the bisecting110

plane of the two neighbouring triangles and that also contains their common111
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edge. Another possibility is to use the information provided by the normals112

at the triangle vertices to construct the plane, by taking, for example, the113

plane orthogonal to the average of the normals at the two triangle vertices114

on the common border. Although the second construction does not always115

guarantee a valid plane, in general it creates better shaped surfaces. In116

section 3 we show some examples of meshes exhibiting stability problems117

related to an inconvenient choice of this plane (more details can be found in118

[10]).119

2.2. PNG1 Triangles120

PNG1 triangles [12] are similar only in spirit to the hybrid parametric121

patches since cubic triangular Bézier patches for each edge of a triangle are122

constructed. Actually, as shown in Figure 2, this scheme differs from the123

previously described one, as the points to be blended to define the Bézier124

control points are obtained starting from the vertices of the triangle. For125

example, the red points in Figure 2(b) are computed using p0 and τ 0.126

For the sake of simplicity, let us explain how the points are constructed127

with respect to the edge e1, i.e., the eight points b201,0, b201,1, b021,0, b021,1,128

b210,0, b120,1, b111,p0,01 and b111,p1,01, shown in Figure 5. The other points are129

generated similarly.

Figure 5: The eight points b201,0, b201,1, b021,0, b021,1, b210,0, b120,1, b111,p0,01 and
b111,p1,01 constructed from p0 and p1 with respect to the edge e1.

130

First, the points p1, p2, and p01 are projected in the direction of n0 onto131

the tangent plane τ 0, Figure 6 left, and the points p0, p01, and p2 in the132
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direction of n1 onto the tangent plane τ 1, Figure 6 right. The result of these133

projections are two adjacent triangles △p0p
τ0
1 p

τ0
2 , △p0p

τ0
1 p

τ0
01 in the plane τ 0134

and △pτ1
0 p1p

τ1
2 , △pτ1

0 p1p
τ1
01 in τ 1. Subdivision of the edges p0p

τ0
1 , p0p

τ0
2 and135

p0p
τ0
01 by factor 1/3 provides a pair of subtriangles (marked in red in Figure136

6 left) whose vertices on the edges p0p
τ0
1 and p0p

τ0
2 define, respectively, the137

points b210,0 and b201,0. Analogously, on τ 1 subdivision of the triangle edges138

provides a pair of subtriangles (marked in blue in Figure 6 right) that defines139

the points b120,1 and b021,1.

Figure 6: Construction of points b201,0, b210,0, b120,1 and b021,1.

140

An affine transformation of the triangle △p0b201,0b210,0 from the tangent141

plane τ 0 into the tangent plane τ 1 provides the point b021,0 (Figure 7(a))142

and an affine transformation of the triangle △p1b021,1b120,1 from τ 1 into τ 0143

provides the point b201,1 (Figure 7(b)).144

For the two interior points, let τ e01 be the plane defined by ne01, where

g1 = b120,1 − b210,0

g2 = (nT + nT01)× g1

ne01 = g1 × g2,

nT is the normal of the triangle plane, and nT01 denotes the normal of145

the neighbour triangle plane. As illustrated in Figure 8, a transfer of the146

red triangle △p0b201,0b210,0 from τ 0 to τ e01 provides the points b111,p0,01,147

and a transfer of the blue triangle △p1b021,1b120,1 from τ 1 to τ e01, provides148

b111,p1,01.149
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(a)

(b)

Figure 7: (a) Affine transformation of the triangle from tangent plane τ 0 into the tangent
plane τ 1. (b) Affine transformation of the triangle from tangent plane τ 1 into the tangent
plane τ 0.
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Figure 8: Construction of the middle plane by two adjacent triangle normals and b120,1 −
b210,0 to provide the points b111,p0,01 and b111,p1,01.

Applying the described procedure to the edges e2 and e3, provides all the150

points as schematically grouped and coloured in Figure 2(b).151

The blending functions for the final control points bijk(u, v, w) are derived
by imposing the conditions to get a G1 join across the edges. Again an
asymmetric blend is proposed for the boundary control points. On the edge
e1, for example,

b210(u, v, w) =
1

w2 + (1− w)2
(
(1− w)2b210,0 + w2b210,2

)
,

b120(u, v, w) =
1

w2 + (1− w)2
(
(1− w)2b120,1 + w2b120,2

)
,

and Nielson-like functions for the six interior points yield

b111(u, v, w) =
uw

uv + uw + vw

(
w(1− u)b111,p2,20 + u(1− w)b111,p0,20

w + u− 2uw

)
+

+
uv

uv + uw + vw

(
u(1− v)b111,p0,01 + v(1− u)b111,p1,01

u+ v − 2uv

)
+

+
vw

uv + uw + vw

(
v(1− w)b111,p1,12 + w(1− v)b111,p2,12

w + v − 2vw

)
.

(1)
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2.3. Walton and Meek’s Gregory patch152

In 1996 Walton and Meek proposed a new quartic Gregory patch in [13].153

Walton and Meek’s definition of the patch heavily depends on the construc-154

tion of the cubic boundary curves ci(t), i = 1, 2, 3, described in two previous155

articles [14, 15]. They create a specific tangent ribbon along each boundary156

curve and then they generate a surface patch with cross-boundary directional157

derivatives that lie in that plane.158

A reasonable candidate for this plane is the one spanned by the derivative
of the curve, i.e., the tangent vector

ċi(t) = 3
2∑

k=0

wi
kB

2
k(t) (2)

and the vector

hi(t) =
2∑

k=0

ai
kB

2
k(t), 0 6 t 6 1, i = 1, 2, 3, (3)

where

ai
0 = ni−1 ×

wi
0

∥wi
0∥
,

ai
2 = ni ×

wi
2

∥wi
2∥
,

ai
1 =

ai
0 + ai

2

∥ai
0 + ai

2∥
,

(4)

with n3 = n0. See Figure 9 for an example.159

A triangular quartic Gregory patch can now be constructed. The control
points of the quartic boundary curves ci (degree raised from cubic) are used
as control points of the patch boundaries. Let the interior control points
adjacent to a boundary (e.g. b112 and b121 with respect to the boundary cor-
responding to e2) be gi,1 and gi,2, i = 1, 2, 3. This implies that each interior
control point is determined twice, once for each boundary it is associated
with, as shown in Figure 2(c). These points gi,1 and gi,2, i = 1, 2, 3, are
obtained by requiring that the directional derivatives

sdii (t) =
3∑

k=0

∆̂i
kB

3
k(t), i = 1, 2, 3,
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Figure 9: The plane spanned by the tangent vector ċ1(t) and the vector h1(t).

corresponding to the directions

d1 = (1,−1/2,−1/2), d2 = (−1/2,−1/2, 1) and d3 = (−1/2, 1,−1/2), (5)

lie in the tangent ribbon constructed for the corresponding boundary. Namely,

sdii (t) =
1

3
αi(t)ċi(t) + βi(t)hi(t), i = 1, 2, 3,

where αi(t) and βi(t) are linear polynomials in t.160

Once the points gi,1 and gi,2 are obtained, a simple symmetric blending
is used to define the three central control points:

b211 =
vg1,1 + wg3,2

v + w
, b121 =

ug1,2 + wg2,1

u+ w
, b112 =

vg2,2 + ug3,1

u+ v
. (6)

2.4. A new cubic Walton and Meek-like Gregory patch161

The study of the three methods presented above inspired us to investigate162

if it is possible to create a new cubic Gregory patch starting from Walton163

and Meek’s construction. In the following it will be called cubicWM patch164

to distinguish it from the original quartic patch of Walton and Meek.165

Let us consider the cubic patch s(u, v, w) with boundary curves expressed
in cubic Bézier form by ci(t), i = 1, 2, 3. The derivatives of these curves
are quadratic Bézier curves defined by (2). If we want to construct a cubic

13



patch, differently from the quartic patch of Walton and Meek, the directional
derivatives sdii (t) in the directions (5) are quadratic Bézier curves

sdii (t) =
2∑

k=0

∆i
kB

2
k(t), i = 1, 2, 3. (7)

The control vectors ∆i
k are shown in Figure 10. Explicitly, for the edge e1,

we obtain

∆1
0 = −1

2
b300 −

1

2
b210 + b201,

∆1
1 = −1

2
b210 −

1

2
b120 + b111,

∆1
2 = −1

2
b120 −

1

2
b030 + b021.

(a) (b) (c)

Figure 10: The control vectors ∆i
k for the three directional derivatives sdi

i (t), i = 1, 2, 3:
(a) ∆1

0, ∆
1
1, ∆

1
2, (b) ∆

2
0, ∆

2
1, ∆

2
2 and (c) ∆3

0, ∆
3
1, ∆

3
2.

166

As explained in section 2.3, Walton and Meek’s method generates a spe-167

cific tangent ribbon along each boundary curve. Then, they create a surface168

patch with cross-boundary directional derivatives that lie in that plane to169

ensure G1-continuity with the neighbouring triangles. We choose to define170

this plane exactly as they proposed, namely as the plane spanned by the171

tangent vector ċi(t) and the vector hi(t) previously defined in equations (2)172

and (3).173

Therefore, the conditions on the final patch control points to ensure G1-
continuity with the neighbouring triangles are as in Walton and Meek’s con-
struction

sdii (t) =
1

3
αi(t)ċi(t) + βi(t)hi(t), i = 1, 2, 3, (8)
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except that here sdii (t) are quadratic instead of cubic. In the following, for the174

sake of simplicity we consider only the condition on the border corresponding175

to i = 1. The same construction can be done on borders corresponding to176

i = 2 and i = 3.177

The simplest choice for the polynomials α1(t) and β1(t) are two constants178

α and β. With this choice, in fact, we obtain three quadratic polynomials in179

(8). By substitution of their Bézier forms (7), (??) and (3) in (8), we compare180

their control points obtaining three points b1
111, b

2
111 and b3

111 to be blended181

to define the interior control point b111. Unfortunately, this substitution182

leads to a system of equations which is not always solvable.183

Let us therefore consider linear functions α1(t) = α1
0(1 − t) + α1

1t and
β1(t) = β1

0(1− t) + β1
1t. This means that (8) becomes

2∑
k=0

∆1
kB

2
k(t) =

(
1∑

k=0

α1
kB

1
k(t)

)(
2∑

k=0

w1
kB

2
k(t)

)
+

(
1∑

k=0

β1
kB

1
k(t)

)(
2∑

k=0

a1
kB

2
k(t)

)
.

By degree elevation of the directional derivative sd11 (t) we obtain cubic poly-
nomials on both sides

3∑
k=0

∆̃1
kB

3
k(t) =

1∑
k=0

2∑
j=0

(
1
k

)(
2
j

)(
3

k+j

) (α1
kw

1
j + β1

ka
1
j)B

3
k+j(t). (9)

By comparing the coefficients of the control points of the cubic polynomials
in eq. (9) we obtain the following system of equations

∆̃1
0 = α1

0w
1
0 + β1

0a
1
0,

∆̃1
1 =

2

3
(α1

0w
1
1 + β1

0a
1
1) +

1

3
(α1

1w
1
0 + β1

1a
1
0),

∆̃1
2 =

1

3
(α1

0w
1
2 + β1

0a
1
2) +

2

3
(α1

1w
1
1 + β1

1a
1
1),

∆̃1
3 = α1

1w
1
2 + β1

1a
1
2.

From the first and the last equation we can compute α1
0, α

1
1, β

1
0 and β1

1 as

α1
0 =

∆̃1
0 ·w1

0

w1
0 ·w1

0

, β1
0 = ∆̃1

0 · a1
0,

α1
1 =

∆̃1
2 ·w1

2

w1
2 ·w1

2

, β1
1 = ∆̃1

2 · a1
2,

15



since det(∆̃1
0,w

1
0, a

1
0) = 0, det(∆̃1

3,w
1
2, a

1
2) = 0, and w1

0 · a1
0 = 0 (see (4)).184

Once α1
0, α

1
1, β

1
0 and β1

1 are calculated, the two central equations can be used185

to compute two interior points b11
111 and b12

111. Repeating this procedure for186

the three borders we obtain six points b11
111, b

12
111, b

21
111, b

22
111, b

31
111 and b32

111 to187

be blended to define the interior control point b111, as shown in Figure 2(d).188

2.4.1. Cubic boundary curves and blending functions189

Once cubic boundary curves are constructed, the six points b11
111, b

12
111,190

b21
111, b22

111, b31
111 and b32

111 can be obtained with the procedure described191

above. These points need to be blended to define the interior control point192

b111(u, v, w).193

We analysed and compared four different surfaces obtained by using dif-
ferent cubic interpolants for the boundary curves and different blending func-
tions for the central control point. We tested the cubic patch by using the
cubic boundary curves proposed in PN triangles [16] and the cubic boundary
curves proposed by Walton and Meek for their quartic patch in [14, 15]. As
blending functions, instead, we use the PNG1 triangles formula (1), and we
define a simpler formula similar to that used by Walton and Meek for the
their three interior control points:

b111(u, v, w) = u

(
vb11

111 + wb32
111

v + w

)
+v

(
wb21

111 + ub12
111

w + u

)
+w

(
ub31

111 + vb22
111

u+ v

)
.

(10)
To summarise we tested the following four different combinations:194

cubicPN-B1: Cubic boundary curves constructed as in PN triangles and195

blending function defined by (10).196

cubicPN-B2: Cubic boundary curves constructed as in PN triangles and197

blending function from PNG1 triangles (1).198

cubicWM-B1: Cubic boundary curves constructed as in Walton and Meek199

and blending function defined by (10).200

cubicWM-B2: Cubic boundary curves constructed as in Walton and Meek201

and blending function from PNG1 triangles (1).202

As already pointed out by Mann et al. in their survey [5], the boundary203

curves play an important role in the shape quality of the interpolating sur-204

face. In the case of the two Gregory patches presented here, in particular,205
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the interior control points heavily depend on the boundary curves. All the206

tests described in the next section have been applied to these four differ-207

ent combinations. These tests showed us that the use of Walton and Meek208

boundary curves yields surfaces with better shape quality.209

On the contrary, the blending function for the interior control point does210

not affect the shape of the surface as much as the boundary curves. But,211

as shown in section 3.1, it deeply affects the computational cost, as far as212

the normal computation is concerned. Therefore, in the next section we use213

cubicWM-B1 for comparison with the other methods in order to keep the214

patch formulation as simple as possible, while the surface quality the best215

possible at the lowest computational cost. More details on these tests can be216

found in [17].217

3. Comparisons218

We implemented all the schemes as an Autodesk Maya R⃝ plug-in (MPx-219

HwShaderNode), based on the plug-in from [12]. The Polygons part of Au-220

todesk Maya R⃝ is a classic polygonal modeller, and lots of low-level and221

high-level functions are available for surface creation.222

3.1. Computational costs223

Before comparing the surface quality of the four schemes, we compare224

their computational costs. We decided to compute manually the number225

of scalar additions/subtractions, scalar multiplications and scalar divisions226

required for the evaluation of the control points bijk(u, v, w). In fact, once227

these control points are computed, the cost for the evaluation of a parametric228

hybrid patch, a PNG1 triangle and the cubicWM-B1 patch is the same as229

that of a cubic Bézier triangle, and the evaluation of a Walton and Meek’s230

patch costs as much as the evaluation of a quartic Bézier triangle. Then, to231

verify these computational costs in practice, we measured the time required232

for the tessellation on the CPU by using a 1000 triangles Bunny mesh, tes-233

sellating every triangle patch into 55 points (tessellation factor f = 10), and234

into 210 points (tessellation factor f = 20). In the vertex shader on the GPU,235

we tessellated the patch into 210 points (tessellation factor f = 20), which236

are handled as OpenGL vertex arrays. As the shading is completely vertex237

shader-bound, we measured the time for vertex shading and fragment shad-238

ing together. These measurements were performed in Maya 2008 on a MS239
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Scheme
Boundary cps Interior cps Total

add/sub mult div add/sub mult div add/sub mult div

Hybrid 36 60 6 4 9 1 40 69 7

PNG1 36 36 6 19 27 4 55 63 10

WM - - - 6 6 3 6 6 3

cubicWM-B1 - - - 8 9 3 8 9 3

Table 1: Number of operations required for the evaluation of bijk(u, v, w) for each scheme.

Windows 7 (64bit) system with Intel P8700 (2.5 GHz) processor and NVidia240

Geforce 9600GT (512 MB) mobile graphics with driver version 258.96.241

Table 1 shows the number of operations required for the evaluation of242

the rational blending functions defining the control points for each method.243

The Gregory patches have the important advantage that only the interior244

control points are blended. Thus the operations required for the evaluation245

of the control points in Walton and Meek’s patch and in our cubicWM-B1246

are considerably reduced with respect to the other two schemes.247

In general, the evaluation of a surface point and normal for the quartic248

patch is more expensive than for a cubic patch, which makes a difference for249

the scalar CPU implementation (not using SIMD extensions). Surprisingly,250

our CPU tests in Table 2 show that this is not necessarily the case when251

considering rational blend schemes. In fact, contrary to our expectations,252

we obtain that for both tessellation factors, cubicWM-B1 is slightly slower253

than Walton and Meek’s quartic patch. This is due to the fact that here we254

evaluate the point and the real analytic normal of the patch. Even if the255

use of a cubic patch, instead of a quartic, allows a faster evaluation of the256

point on the surface, the more complicated blending function (10) for six257

points yields more expensive derivative formulas than the simpler blending258

functions (6) for the quartic patch. On the other hand, on the GPU we259

obtain that the point-normal evaluation of our cubicWM-B1 patch is faster260

than that of all the other schemes. Here, the control point computation is261

performed once on the CPU and is included in the GPU timings. Point and262

normal evaluations are then performed on the GPU.263

The parametric hybrid patch is slower than PNG1 triangles on the CPU,264

probably because the construction of its control points is more complex, while265

it is faster on the GPU as its blending functions are simpler than those of266

PNG1 triangles.267
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Scheme
CPU GPU

f = 10 f = 20 f = 20
Hybrid 331ms 3fps 1080ms 0.91fps 38.74ms 25.81fps
PNG1 202ms 4.9fps 730ms 1.37fps 47.14ms 21.21fps
WM 76.9ms 13fps 266ms 3.77fps 22.40ms 44.63fps

cubicWM-B1 83ms 12fps 286ms 3.5fps 19.40ms 51.54fps

Table 2: Time required for the tessellation on the CPU and on the GPU.

Therefore, on the CPU hybrid parametric patch’s blending functions are268

the most expensive, followed by those from PNG1 triangles, cubicWM-B1269

and Walton and Meek’s patch, while on the GPU cubicWM-B1 performs270

best, followed by Walton and Meek’s patch, hybrid parametric patch and271

PNG1 triangles.272

3.2. Sphere and Torus approximation273

In this section we compare the behaviour of the three schemes with respect274

to a known surface. We compare the signed distance between the analytic275

surface (a sphere and a torus) and the piecewise parametric interpolants276

computed by the schemes on a sampling of points from that surface. We are277

especially interested in the schemes behaviour when refining the base mesh278

of the piecewise parametric surface.279

The base mesh for the sphere is an icosahedron sampled from a sphere of280

radius r = 1 centred in the origin. At any refinement step i, it is refined by281

means of a 4-split division of the triangles, which results in triangle meshes282

with 20 · 4i triangles, i.e., 20 for i = 0, 80 for i = 1, 320 for i = 2, 1280 for283

i = 3 and 5120 triangles for i = 4.284

The base mesh for the torus of radii r1 = 1 and r2 = 0.5 centred in285

the origin is generated by a subdivision of the bivariate parameter domain286

[0, 2π)× [0, 2π) into j2 quadrangular regions. After the refinement, the quad-287

rangular mesh is triangulated adding the diagonals. This results in 2 · j2288

triangles at any refinement step j (j = 1, 2, 3, . . . ).289

We measure the signed distance between the analytic surface and the290

piecewise parametric interpolant along the patch normal for the refinement291

steps i = 0, 1, 2, 3, 4, in the case of the sphere, and for j = 5, 10, 15, 20, 25, 35,292

in the case of the torus. Iterations i = 4 and j = 35, respectively, yield mean293

distance values close to zero.294
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Figures 11 and 12 show, respectively, the approximation behaviour of the295

mean signed distance to the sphere and to the torus. Concerning the sphere,
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Figure 11: Mean signed distance of sphere interpolation depending on the refinement step
i.

296

the plot in Figure 11 shows that for all four methods the mean distance tends297

to zero when refining the mesh. While PNG1 triangles, Walton and Meek’s298

patch and cubicWM-B1 approximate the analytic surface remaining always299

in the interior, hybrid parametric patches have in all refinement steps pos-300

itive mean distances. This behaviour is confirmed by the statistical data301

collected in Table 3 where the maximum signed distances for all methods302

except hybrid parametric patch are zero, especially for steps i = 0 and i = 1,303

confirming that, not only the mean distance, but all the distances collected304

are always negative. CubicWM-B1 and Walton and Meek’s patches have al-305

ways the smallest standard deviations; whereas, PNG1 triangles have always306

the biggest, except for i = 0. All the mean distances for the four methods307

decrease with the same order of magnitude except for i = 4, where PNG1308

triangles have the worst mean distance (behaviour confirmed also by the min-309

imum and maximum values). We compare their absolute values for all the310

steps in Figure 13. Discarding the sign of the distances, cubicWM-B1 and311

Walton and Meek’s patch have the best approximation behaviour, followed312

by hybrid parametric patch and PNG1 triangles.313
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Figure 12: Mean signed distance of torus interpolation depending on the refinement step
j.
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Figure 13: Absolute values of the mean distance of sphere interpolation depending on the
refinement step i.
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Step Methods Min,Max distance Mean distance ± std. dev.

i = 0

Hybrid [-0.00274014, 0.0131108] 0.00498299 ± 0.00479724
PNG1 [-0.0111526, 0] -0.00695174 ± 0.00452694
WM [-0.0105214, 0] -0.00507952 ± 0.00375258

cubicWM-B1 [-0.0105212, 0] -0.0050795 ± 0.00375258

i = 1

Hybrid [-0.000161588, 0.00126064] 0.000440331 ± 0.000403261
PNG1 [-0.00230867, 0] -0.000629614 ± 0.000615845
WM [-0.000817776, 0] -0.000329054 ± 0.000245696

cubicWM-B1 [-0.000817716, 0] -0.000329053 ± 0.000245695

i = 2

Hybrid [-9.35793·10−6, 8.9407·10−5] 2.92289·10−5 ± 2.57138·10−5

PNG1 [-0.00026983, 8.07047·10−5] -4.43266·10−5 ± 7.07615·10−5

WM [-5.41806·10−5, 0] -2.04634·10−5 ± 1.51959·10−5

cubicWM-B1 [-5.4121·10−5, 0] -2.04574·10−5 ± 1.51922·10−5

i = 3

Hybrid [-7.15256·10−7, 5.84126·10−6] 1.82351·10−6 ± 1.59932·10−6

PNG1 [-6.02603·10−5, 3.0756·10−5] -3.00776·10−6 ± 1.02762·10−5

WM [-3.45707·10−6, 0] -1.28954·10−6 ± 9.54655·10−7

cubicWM-B1 [-3.45707·10−6, 0] -1.28604·10−6 ± 9.5211·10−7

i = 4

Hybrid [-2.38419·10−7, 5.96046·10−7] 8.79169·10−8 ± 1.11149·10−7

PNG1 [-1.46627·10−5, 8.10623·10−6] -2.0942·10−7 ± 1.69522·10−6

WM [-4.17233·10−7, 2.38419·10−7] -9.45127·10−8 ± 9.17229·10−8

cubicWM-B1 [-3.57628·10−7, 2.38419·10−7] -9.28638·10−8 ± 8.45791·10−8

Table 3: Statistics of signed distances to the sphere: mean distance with standard devi-

ation (defined as
√

1
n−1

∑n
k=1(xk − x)2, xk being the distance values) and minimum and

maximum distance.
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The plot in Figure 12 seems to show the same behaviour for the torus314

interpolation. But, the statistical data in Table 4 reveal some differences.315

Here, minimum and maximum values vary between negative and positive316

values for all the methods; PNG1 triangles, Walton and Meek’s patch and317

cubicWM-B1 patch have always negative mean distances, while parametric318

hybrid patches always positive. PNG1 triangles have in all the steps the319

biggest mean distances in absolute value. Except in the first step j = 5,320

cubicWM-B1 and Walton and Meek’s distances have the smallest values in321

absolute value. For the three methods minimum and maximum values show322

almost the same behaviours, and decrease with the same order of magnitude.323

Nevertheless parametric hybrid distances vary always in a smaller interval.324

In fact, parametric hybrid patches have, in general, the smallest standard325

deviations.326

In summary, cubicWM-B1 and Walton and Meek’s patch show almost327

identical behaviours and they perform best, followed by the hybrid para-328

metric patch, whereas PNG1 triangles exhibits the worst approximation be-329

haviour.330

3.3. Arbitrary triangle meshes331

We now compare the surfaces obtained by the four schemes on arbitrary332

triangle meshes with a low triangle count, because, in general, the real-world333

use of these methods concerns this kind of meshes.334

By using highlight lines and Gaussian curvature plots [18] we analysed the335

surfaces generated from the following seven meshes: Sphere, Torus, Round-336

edCube, Head, Pawn, Bunny and Dinousaur. See Table 5 for statistical337

information about these meshes. We chose them because they represent ar-338

bitrary triangle meshes and also because for some of the schemes they exhibit339

certain specialities.340

We use the exact surface normals n(u, v) =
∂s
∂u

(u,v)× ∂s
∂v

(u,v)

∥ ∂s
∂u

(u,v)× ∂s
∂v

(u,v)∥ for computing341

the Gaussian curvature. Table 6 contains the minimum, maximum and mean342

values of the Gaussian curvature computed on a dense sampling grid of 210343

points per patch, with standard deviation defined as
√

1
n−1

∑n
k=1(xk − x)2.344

Since the second order derivatives do not exist in the vertices of the patch,345

these data are not taken into account in the statistics and are plotted in346

black in the figures. A common scale is used to compare the curvature plots347

of the four methods and the maximum and minimum values of each of them348

are converted to that scale.349
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Step Methods Min,Max distance Mean distance ± std. dev.

j = 5

Hybrid [-0.0227294, 0.0478425] 0.00720392 ± 0.015833
PNG1 [-0.158901, 0.044207] -0.00913514 ± 0.0326367
WM [-0.0977793, 0.0493978] -0.00872526 ± 0.0304518

cubicWM-B1 [ -0.0977793, 0.0493978] -0.00872526 ± 0.0304518

j = 10

Hybrid [-0.00262406, 0.00356019] 0.000410239 ± 0.000964081
PNG1 [-0.00952291, 0.00411868] -0.000726871 ± 0.00221538
WM [-0.00544271, 0.00396627] -0.000399186 ± 0.00178612

cubicWM-B1 [-0.00544268, 0.00396627] -0.000399186 ± 0.00178612

j = 15

Hybrid [-0.000710934, 0.000884116] 8.30311·10−5 ± 0.000249906
PNG1 [-0.00201935, 0.00107235] -0.000149719 ± 0.000488205
WM [-0.00117564, 0.00107831] -6.02477·10−5 ± 0.000400663

cubicWM-B1 [-0.00117561, 0.00107831] -6.02466·10−5 ± 0.000400662

j = 17

Hybrid [-0.000484645, 0.0006001] 5.06274·10−5 ± 0.000167361
PNG1 [-0.00122964, 0.000724077] -9.13885·10−5 ± 0.000309585
WM [-0.000749379, 0.000720561] -3.39081·10−5 ± 0.000259712

cubicWM-B1 [-0.000749409, 0.000720561] -3.39079·10−5 ± 0.000259712

j = 19

Hybrid [-0.000337839, 0.000417173] 3.25315·10−5 ± 0.000117689
PNG1 [-0.000791073, 0.000496805] -5.89122·10−5 ± 0.00020772
WM [-0.000505209, 0.000505209] -2.05269·10−5 ± 0.000178293

cubicWM-B1 [-0.000505149, 0.000505209] -2.05266·10−5 ± 0.000178293

j = 20

Hybrid [-0.000292093, 0.000354946] 2.6755·10−5 ± 0.000100177
PNG1 [-0.000647008, 0.000430048] -4.78646·10−5 ± 0.00017302
WM [-0.000424266, 0.000427842] -1.60885·10−5 ± 0.000150207

cubicWM-B1 [-0.000424266, 0.000427842] -1.60887·10−5 ± 0.000150205

j = 35

Hybrid [-5.30481·10−5, 5.91278·10−5 2.66562·10−6 ± 1.78022·10−5

PNG1 [-8.57115·10−5, 7.31945·10−5] -5.37519·10−6 ± 2.57699·10−5

WM [-6.89626·10−5, 7.31945·10−5] -1.6294·10−6 ± 2.50909·10−5

cubicWM-B1 [-6.89328·10−5, 7.31945·10−5] -1.62901·10−6 ± 2.50907·10−5

Table 4: Statistics of signed distances to the torus: mean distance with standard devia-

tion (defined as
√

1
n−1

∑n
k=1(xk − x)2, xk being the distance values) and minimum and

maximum distance.
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Name #V/#E/#T
Mean angle normals

Min,max angle normals #E convex/concave/inflection
± std. dev.

Sphere

12/30/20 0.794654± 0.794654 [0.794654, 2.04327 · 10−8] 20/0/10

Torus

25/75/50 0.726595± 0.0808356 [0.620812, 0.826384] 32/7/35

RCube

30/84/56 0.812907± 0.136409 [0.688079, 1] 42/1/40

Head

102/300/200 0.8214± 0.186177 [−0.0221268, 0.999741] 106/30/163

Pawn

154/456/304 0.801564± 0.236914 [−0.115779, 0.999559] 144/32/280

Bunny

502/1500/1000 0.911182± 0.113563 [−0.147974, 0.999985] 556/71/873

Dinosaur

927/2775/1850 0.935497± 0.0966668 [−0.625247, 0.999996] 1096/205/1473

Table 5: Statistics of triangle meshes: number of vertices/edges/triangles, angle cosine be-
tween vertex and triangle normals (mean ± standard deviation, minimum and maximum),
number of convex, concave, inflection edges.
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Mesh Methods Min,Max curv Mean curv ± std. dev.

Sphere

Hybrid [0.327537, 1.83937] 0.901277 ± 0.414196
PNG1 [0.807412, 1.45757] 1.04739 ± 0.131043
WM [0.768366, 1.20612] 0.971769 ± 0.123814

cubicWM-B1 [0.768408, 1.1719] 0.971776 ± 0.123817

Torus

Hybrid [-820.956, 63.2143] −2.50575± 29.3715
PNG1 [-8.33147, 8.23699] -0.585947 ± 2.33862
WM [-9.89538, 10.9907] -0.61217 ± 2.58268

cubicWM-B1 [-9.8852, 10.9848] -0.61218 ± 2.58269

Cube

Hybrid [-0.422122, 0.150237] -0.0479029 ± 0.123352
PNG1 [-3.08765, 5.62103] 1.26259 ± 1.76093
WM [-9.90188, 13.1909] 1.49746 ± 3.27045

cubicWM-B1 [-9.80683, 13.1662] 1.50137 ± 3.27251

Head

Hybrid [-11347, 31374.6] 0.63273 ± 204.498
PNG1 [-266.758, 245.246] 0.367094 ± 6.93173
WM [-5327, 19960] 2.04325 ± 141.829

cubicWM-B1 [-5173.04, 19957.7] 2.04977 ± 141.381

Pawn

Hybrid [-205.12, 5.76324 -0.0720587 ± 3.05287
PNG1 [-20.7914, 78.5121] 0.0699347 ± 1.59282
WM [-618.648, 964.635] 0.143624 ± 18.6824

cubicWM-B1 [-543.238, 969.831] 0.152935 ± 18.5275

Bunny

Hybrid [-998.402, 239.024] -0.00863217 ± 3.26164
PNG1 [-11.0328, 28.9473] 0.0112989 ± 0.296384
WM [-102.571, 2954.82] 0.0485715 ± 7.87631

cubicWM-B1 [-102.584, 2951.82] 0.0486907 ± 7.8803

Dinosaur

Hybrid [-144.925, 94.1432 -0.00141404 ± 0.487428
PNG1 [-18.138, 287.879] 0.0042961 ± 0.65595
WM [-1136.1, 195.25] 0.000524591 ± 2.06327

cubicWM-B1 [-7.13831, 119.032] 0.00372546 ± 0.298818

Table 6: Statistics on Gaussian curvature. The mean value for Gaussian curvature (mean
± standard deviation) and the minimum and maximum value measured from the surfaces.
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Comparing these statistics for all the meshes, we found that the mean350

Gaussian curvature is negative for the hybrid parametric patch, except for351

the Sphere and the Head mesh, while for the other three methods the mean352

curvature is positive, with again the Torus as exception. Walton and Meek’s,353

cubicWM and parametric hybrid patches have, especially in the Torus and354

Head mesh, high standard deviations, revealing a more accentuated varia-355

tion of the curvature with respect to minimum and maximum values. It is356

surprising that the stability problem of hybrid parametric patches, shown in357

the following, does not highly affect the curvature values in the other meshes.358

Again cubicWM-B1 behaves similarly to Walton and Meek’s patch, except in359

the Dinosaur mesh where the curvature does not vary as much as for Walton360

and Meek’s patch since minimum, maximum and standard deviation values361

are considerably lower.362

To show the behaviour of the four schemes on well known shapes, we first363

graphically analyse the sphere and the torus studied in the previous section364

with i = 0 and j = 5, respectively. Although according to Table 6 the four365

methods seem to be faithful to the analytic shape, their plots in Figure 14 and366

Figure 15 show several differences. In the first line, by comparing the shaded367

surfaces we find a more oscillating surface for the hybrid parametric method368

(in particular by looking at the silhouettes) and this behaviour is confirmed369

by the highlight lines and the curvature plots. More precisely, curvature370

plots in the sphere reveal that Walton and Meek’s and cubicWM-B1 surfaces371

better simulate the behaviour of a real sphere, while the other two methods372

exhibit higher curvature variations near the borders of the patches. On the373

other hand, for the curvature plots of the Torus all four methods present374

high curvature variations in the regions where zero curvature is expected,375

but again highlight lines and curvature plots show that the hybrid parametric376

surface is the worst.377

As the sphere and the torus, the RoundedCube mesh (Figure 16) and the378

Head mesh have a small triangle count and a quite high number of inflection379

edges. As expected we found the same behaviours observed in the sphere380

and the torus. The surface constructed by the parametric hybrid patches is381

very wavy, and the statistics confirm this behaviour. On the other hand, the382

curvature statistics and the highlight lines show that PNG1 triangles yield the383

surface with the best appearance since the maximum and minimum values384

are in a smaller range. Besides, although all the surfaces are G1 continuous,385

the PNG1 triangles RoundedCube gives the visual impression to be smoother386

than Walton and Meek’s and cubicWM-B1 surfaces.387
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(a) (b) (c) (d)

Figure 14: Sphere i = 0: surfaces obtained from (a) hybrid parametric patch, (b) PNG1
triangles, (c) Walton and Meek’s quartic patch and (d) cubicWM-B1 patch. First row:
shaded surfaces; second row: highlight lines; third and fourth row: Gaussian curvature
plots with different scale.
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(a) (b) (c) (d)

Figure 15: Torus j = 5: surfaces obtained from (a) hybrid parametric patch, (b) PNG1
triangles, (c) Walton and Meek’s quartic patch and (d) cubicWM-B1 patch. First row:
shaded surfaces; second row: highlight lines; third and fourth row: Gaussian curvature
plots with different scale.
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(a) (b) (c) (d)

Figure 16: RoundedCube: surfaces obtained from (a) hybrid parametric patch, (b) PNG1
triangles, (c) Walton and Meek’s quartic patch and (d) cubicWM-B1 patch. First row:
shaded surfaces; second row: highlight lines; third row: Gaussian curvature.
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When we consider meshes with a higher number of faces, as for example388

the Pawn mesh, the stability problem of the parametric hybrid patch related389

to the choice of the plane on which the patch pairs are projected, becomes390

evident (Figure 17). In this mesh, in particular, the chosen projection plane391

is unstable because the normal given in a vertex is perpendicular to the392

normal defined by the triangle plane and this yields a zero denominator in393

the definition of the control points. For a more detailed discussion on the394

possible choices of the projection plane and their consequences we refer the395

reader to [10]. By comparing the resulting surfaces of the other three methods396

in Figure 18, we notice that they also present artifacts, even if minor when397

compared to the parametric hybrid surface.

Figure 17: The parametric hybrid patch reveals stability problems when applied to the
Pawn mesh.

398

Finally, when the four methods are applied to meshes with a higher tri-399

angle count, as, for example, Bunny and Dinosaur (respectively 1000 and400

1850 faces), they behave differently. On one hand, in Bunny (Figure 19)401

PNG1 triangles seems to visually produce the smoothest surface and this is402

confirmed by the highlight lines, where those of cubicWM-B1, Walton and403

Meek and parametric hybrid surfaces appear more discontinuous and frag-404

mented, and by the statistics on the curvature. Surprisingly, the statistics on405

the curvature of parametric hybrid patch are not heavily affected from the406

stability problem that can be easily remarked on the ear of the Bunny. The407

curvature value is, in fact, on average lower than the values of all the other408
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(a) (b) (c) (d)

Figure 18: Pawn in columns from left to right: (a) parametric hybrid patch, (b) PNG1
triangles, (c) Walton and Meek’s Gregory patch and (d) cubicWM-B1 patch. First row:
shaded planar mesh; second row: shaded surfaces.
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tested meshes, although minimum and maximum values for all the methods,409

except PNG1 triangles, are high. This means that the curvature strongly410

deviates from the mean value. In particular, for Walton and Meek’s and411

cubicWM-B1 patches standard deviations are extremely large. On the other412

hand, Dinosaur’s curvature values are surprisingly much lower than those of413

all the other meshes and the standard deviation values are more acceptable,414

except for Walton and Meek’s patch. A reasonable explanation could be that415

the parametric hybrid patch on this mesh exhibits less triangles with stability416

problems than the previous meshes, resulting in better curvature statistics.417

No more differences can be seen from the shaded surfaces, the highlight lines418

and the curvature plots, even with a close up on the details.419

4. Conclusions420

In this article we made a comparison of local parametric G1 interpolatory421

schemes that use rational blends to bypass the vertex consistency problem422

in the construction of the surface. The main emphasis of this comparison is423

on the computational costs of the different schemes available, as well as on424

the surface quality, investigated by using well known methods of surface in-425

terrogation as highlight lines and Gaussian curvature plots. The comparison426

includes four different schemes based on triangular Bézier patches: hybrid427

parametric patch and PNG1 triangles of degree 3, Walton and Meek’s Gre-428

gory patch of degree 4. The fourth cubicWM-B1 scheme is a cubic Gregory429

patch that we proposed inspired by Walton and Meek’s construction.430

The study on the number of operations required to evaluate the control431

points reveals that Walton and Meek’s patch, and consequently cubicWM-432

B1 patch, have the important advantage that only the interior control points433

are blended. Furthermore, PNG1 triangles are also penalised by the more434

complicated blending function for the interior control point. In practice,435

we verified this assumption by measurements on the time required for the436

tessellation of the patches on the CPU and on the GPU. Both on the CPU437

and on the GPU, cubicWM-B1 and Walton and Meek’s patches perform best,438

where Walton and Meek’s patch is faster on the CPU and cubicWM patch439

is faster on the GPU.440

When analysing the surfaces constructed by the four schemes with respect441

to a sphere and a torus, the statistics show that Walton and Meek’s and442

cubicWM-B1 patches have the best approximation behaviour, followed by443

parametric hybrid patches and PNG1 triangles.444
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(a) (b) (c) (d)

Figure 19: Bunny: surfaces obtained from (a) hybrid parametric patch, (b) PNG1 trian-
gles, (c) Walton and Meek’s quartic patch and (d) cubicWM-B1 patch. First row: shaded
surfaces; second row: highlight lines; third row: Gaussian curvature.
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On the contrary, on arbitrary triangle meshes PNG1 triangles give in445

general the surfaces with the best appearance. Their statistics, indeed, show446

that their curvature values vary more regularly. Besides, when we increase447

the number of faces the stability problem of the parametric hybrid patch448

related to the choice of the plane on which the patch pairs are projected449

becomes evident. Unfortunately, this fact makes this method practically450

unusable on meshes with completely arbitrary normals. In many arbitrary451

triangle meshes analysed, Walton and Meek’s and cubicWM-B1 surfaces seem452

to suffer in a certain sense from flatness of their boundary curves, as the high453

standard deviation values in the statistics on the curvature confirm.454

From all our tests we can assert that our cubicWM-B1 patch attains455

almost identical surfaces to the quartic original Walton and Meek’s patch,456

with lower computational costs on the GPU. In particular, the behaviour457

of our cubic version is slightly better in sphere and torus approximation, as458

described in section 3.2.459

We additionally remark the following important property of our cubicWM-460

B1 patch and Walton and Meek’s Gregory patch. Differently from the other461

two methods, they do not directly use the triangle neighbour in their con-462

struction, since the interior control points are constructed by means of tan-463

gent ribbons that depend only on the boundary curves. This is important in464

some applications, as, for example, in computer games, where usually stored465

neighbourhood information is not available.466

All the results of these tests gave us several subjects and suggestions for467

future work. First, we want to improve our cubicWM-B1 patch by investi-468

gating if the use of different cubic boundary curves can yield surfaces that469

do not suffer from flatness on arbitrary meshes. Second, we believe that also470

other choices of the function hi(t) used to define the plane for the tangent471

ribbons could be of interest for further investigation.472
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