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Abstract

In this paper, we show how to extend the witness method to deal with geometric
constraint systems encountered in CAD-CAM. We give ways to tackle several
important problems linked to the handling of under- and over-constrained sys-
tems and propose a powerful decomposition algorithm.

In a first step, we recall the theoretical framework of the witness method in
geometric constraint solving and extend this method to generate a witness. We
show then that it can be used to incrementally detect over-constrainedness and
thus to compute a well-constrained boundary system. We propose an algorithm
to check if anchoring a given subset of the coordinates brings the number of
solutions to a finite number.

We give an algorithm to efficiently identify all maximal well-constrained
parts of a geometric constraint system. We introduce the algorithm of W-
decomposition to identify all well-constrained subsystems: it manages to decom-
pose systems which were not decomposable by classical combinatorial methods.

Key words: Geometric Constraints Solving, Witness configuration, Jacobian
matrix, YW-decomposition, Under-constrainedness, Over-constrainedness,
Well-constrainedness, Transformation groups

1. Introduction

Geometric constraints solving in Computer-Aided Design (CAD) aims at
yielding a figure which meets some incidence and metric requirements (e.g. dis-
tances between points or angles between lines), usually specified in graphical
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Figure 1: A 2D technical sketch (left) and a possible solution (right).

form. Formally, a geometric constraint system (GCS) consists in constraints
(predicates) on unknowns (geometric elements) with respect to parameters (met-
ric values). Solutions are returned as the coordinates of the geometric elements.
The left of figure 1 shows an example of a technical sketch, and its right shows
a possible solution (others exist). For more formal definitions of geometric con-
straint systems, the reader may refer to [28].

The literature describes a number of different approaches to solve geometric
constraint systems:

e algebraic methods consist in translating the GCS into a set of equations
and working on the equation system, thus forgetting the geometrical back-
ground. Algebraic methods can be classified in numerical methods (it-
erative computations converging to an approximate solution from initial
values given by the user, such as Newton-Raphson [45] or the continuation
method [26]) and symbolic methods (direct computations on the equations
— these methods are seldom used because of their complexity [1]),

e geometric methods use the geometric knowledge to solve the system: rule-
based methods [2, 19] deduce construction plans by an explicit use of
geometric rules, graph-based methods [8, 11, 26, 32, 33, 37] compile this
knowledge into algorithms which consider only combinatorial and connec-
tivity criteria,

e hybrid methods [5, 10, 20] alternate algebraic and geometric phases of
computations to use the power of both approaches.

For more details on geometric constraint solvers, see [14]. A general trend,
both to reduce complexity and to enhance resolution power, consists in de-
composing the GCS into solvable subsystems and in assembling their solu-
tions [5, 7, 11, 15, 17, 26, 32, 33, 37, 41]. For instance, on the 2D example
of figure 1, it is easy to separately solve each “triangle” (p1papes, p2psps and
papsps) and then assemble them. For a detailed survey of decomposition meth-
ods, see [18].

Notice that, on the example of figure 1, if one removes one of the triangles,
say pepsp4, and then tries to solve the remaining system, one needs to add in-
formation from the solved subsystem, otherwise the remaining system becomes



articulated. This piece of information is called the boundary [28]. Although sev-
eral methods exist to find the relevant information in specific resolution frame-
works [32], no general algorithm yet exists to compute the boundary without
adding too much information.

Indeed, it is important for resolution methods, especially for graph-based
methods, that the system does not have too few or too many constraints.
Loosely speaking, a system is called

e under-constrained if it has an infinite number of solutions because there
are not enough constraints to pin down every geometric element,

e over-constrained if it has no solution because of constraint contradictions,
e well-constrained if it has a finite positive number of solutions.

Invariance of rigid systems by direct isometries is generally taken into account
by anchoring a point and a direction in 2D, a point and two directions in 3D.
The point and the direction are called a reference for the direct isometries and
constitute what we call an anchor of the system. Other transformation groups
may be considered [36, 41].

A lot of work has been done about the detection of over-constrainedness [16,
31] or under-constrainedness [21, 40, 46] and more generally about the charac-
terization of rigidity [22, 23, 36, 43]. Yet, methods described in the literature
may fail to consider the consequences of mathematical theorems that are not
explicitly taken into account in the construction of the resolution algorithm.
Since a theorem list cannot be exhaustive!, it is impossible to develop a rule-
based or graph-based algorithm that detects all geometric properties induced
by mathematical theorems.

In this article, we extend the witness method [29] to address several problems
cited above: how to determine the constrainedness level of a GCS without being
tricked by mathematical theorems (see for instance figure 8); how to build a
well-constrained boundary system; how to check if a potential anchor does not
make the system over-constrained; how to efficiently detect all maximal well-
constrained subsystems of a given GCS; how to decompose a well-constrained
system into the set of all its minimal well-constrained subsystems.

For conciseness reasons, in the rest of this paper, we consider 2D systems,
unless explicitly mentionned otherwise. Yet, all algoritms can be extended to
3D systems with nearly no changes.

This article is organized as follows: section 2 recalls the principles of the
witness method and gives a way to generate a witness; section 3 introduces an
incremental version of the Gauss-Jordan elimination method and demonstrates
that it leads to a correct greedy algorithm to compute a well-constrained bound-
ary system; section 4 shows how to decide if a potential anchor is valid or not;
section 5 gives algorithms to efficiently identify the maximal well-constrained

I More precisely, the set of theorems is recursively enumerable, but not recursive in general.



Figure 2: Non infinitesimally rigid frameworks. The framework on the left is rigid.

subsystems of an articulated system (also called flexible system); section 6 de-
duces from these algorithms a method to further decompose a rigid system into
well-constrained subsystems; section 7 discusses the robustness issues of our
algorithms; finally, section 8 concludes and gives perspectives to this work.

2. The witness method

2.1. Principle

The notion of witness appears in different domains such as the study of
polynomial systems through the principle of algebraic probability one [3§],
probabilistic proofs in geometry [6] or the Rigidity Theory [12].

The idea consists in studying generic properties of a continuous collection
of objects through the study of a single one of these objects: a witness. Since
the rigidity is an important part of our concern, we recall here the basics of the
rigidity theory as described in [12].

2.1.1. Frameworks and rigidity

The question of rigidity is studied through the notion of frameworks. A
framework is a triple (V, E,p) where (V,E) is a graph and p : V — R? a
realization of the graph, which maps the vertices of V to points of dimension d.
Thinking of graph edges as rigid bars and of vertices as articulation points, the
main goal of combinatorial rigidity is to answer “Is (V, E, p) rigid?”, i.e. are rigid
body motions allowed only on the whole framework, with no local deformation.

An infinitesimal flexion is then a map ¢ : V — R? such that (p(i) — p(j)) -
(q(i) —q(jy)) = 0, for each (i,5) € E. A framework is called infinitesimally rigid,
if the only infinitesimal flexions arise from the direct isometries of R?, i.e. the
translations and rotations. It is proven that infinitesimal rigidity is a stronger
property than rigidity: a framework can be rigid but not infinitesimally rigid,
famous examples are given in figure 2 (see [12]). Counter-examples of rigid but
not infinitesimally rigid frameworks arise when the framework is singular.

A framework F' = (V, E,p) is said generic if there is a neighborhood of F
where all frameworks with graph (V, F) are rigid if F' is, and not rigid otherwise.
A generic rigid framework is said generically rigid. Two main results in rigidity
theory are stated by the following proposition:

Proposition. Consider a graph (V, E). If there is a realization p such that the
framework (V| E,p) is generically rigid, then the frameworks (V, E, ¢q) where ¢



is another realization of the graph, is rigid for almost any ¢q. On the other hand,
if two frameworks (V, E,p) and (V, E, q) are generic, then they are both rigid
or both not rigid.

This proposition justifies the fact that in 2D, the Laman theorem [23] gives
a combinatorial characterization of rigidity. Alas, such a characterization is an
open problem in dimension 3 or higher.

From the geometric constraints point of view, a framework in rigidity the-
ory corresponds to the realization of a geometric constraint system where all
constraints are point-to-point distance constraints: such a system is generically
well-constrained up to direct isometries if it is generically rigid. This was gen-
eralized by Michelucci et al. [29, 30] to metric constraints over points, lines,
ete. (distances and angles) and to incidence constraints (colinearities in 2D and
3D, coplanarities in 3D).

2.1.2. Extension to CAD.

As stated above, geometric constraint systems in CAD naturally lead to
constraint graphs, or more generally to hypergraphs. It is then tempting to
extrapolate results of the rigidity theory, such as Laman’s theorem, into the
field of constraint solving. In our case, the constraints are put in a graphical
form on the sketch (see figure 1) which is a realization of the constraint graph
the same way than in Rigidity Theory. Under some genericity assumptions, it
is a perfect candidate to be a witness for the constrainedness properties.

Indeed when the designer draws a sketch, he/she has a solution X,, for a
system F'(X, A,,) = 0, with some parameter values A,, read on the sketch. Then
the goal is a solution for the system F(X, A,) = 0, where A, are the values given
for the dimensioning. This fact has been used within the continuation method
with homotopy in CAD [3, 24] or to define a neighborhood relationship between
figures [4]. In fact, our purpose is close to these problematics since we claim
that the sketch is like the searched solution from the constrainedness point of
view.

In the CAD domain, all the geometric constraints can be put under the form
of polynomial equations, and F' is a C'*° class function. We can then consider a
Taylor expansion of system F(X, A,) = 0, and get:

F(Xp+ eV, Ay) = F(Xu, Ay) + eF'(Xo, Ap)V + O(£2)

where V can also be seen as the instant velocity of each object involved in
the system and ¢ is a small time step. Then, £V is an infinitesimal flexion, or
motion, if it leads from a solution to another solution of the system. Or, in
other words, the O(¢?) term in the previous formula becomes in fact a o(g?)
term. Under these conditions, we must have

F'(Xu, Au)V =0

The space of the infinitesimal motions allowed by the constraints at the
witness is then given by ker(F’(X,, Ay)). Note that



o the matrix F'(X,, Ay) is known as the Jacobian matrix of the system
F(X,A,) = 0 taken at point X,,;

e when all constraints are point-to-point distances, the Jacobian matrix is
the rigidity matrix considered in Rigidity Theory;

e for other constraints with parameters the genericity conditions are alike
those in the combinatorial case: a parameter value A,, and a corresponding
solution X, are generic if the root is an implicit function of the parameters
in some open neighborhood of (X,,, A, ); for instance, for a triangle spec-
ified with three length parameters, this condition forbids that one length
is the sum of the others; more generally this condition implies that the
matrix

< OF(X,A)/0X OF(X,A)/0A )
0 Id

has the same rank in an open neighborhood of (X, A,,). When all the
equations are polynomials, because of the algebraic probability one princi-
ple, the generic parameter values are dense in the set of parameter values
corresponding to a realization.

We give some examples for the formulation of generic constraints. For point,
line, plane incidences, we assume that the corresponding constraints are speci-
fied explicitly without parameters. This is to avoid expressing point-point inci-
dences by a distance constraint (P, — P2 ;)? + (P1, — P2 y)? = d? with distance
parameter d = 0. For a distance constraint (P, — P> ,)? + (P1,y — P2 y)? = 2,
the parameter d = 0 is not generic, as the constraint is singular at the solu-

_— ——
tion point. For an angle constraint angle(Py, Py, P3) = 6, i.e. PPy - P3Py =
Ip, pylp,p, cos @, the parameter values § = 7, § = £7/2, and § = 0 are not
generic. Similarly, point-line, line-plane incidences and line-line, plane-plane
parallelism /orthogonality constraints are not expressed by angle constraints be-
cause it would introduce non-generic angles.

Typicality. A witness is typical if it is representative for the searched solu-
tion, 4.e. it has the same combinatorial properties (coincidences, collinearities,
coplanarities, etc.). With the usual hypothesis that the sketch and the wanted
solution are on the same continuation path, the sketch is clearly a typical wit-
ness [4]. But even a random solution (X, 4,), {(X,A4) : F(X, A) = 0} with the
specified combinatorial properties is typical with probability 1 for a set of witness
solutions. Note that systems exist with witness solutions, which are different
in combinatorial properties, and no continuous deformation exists to transform
one into the other. For an example of such a system see figure 14 in [18].

We can then study the degrees of freedom of the system by studying the
rank of the Jacobian matrix F’(X,,, A,) on a typical witness X,,, and in the
case of under-constrainedness, the structure of the allowed infinitesimal motions
can be deduced from the study of the kernel of F'(X,,, A,,).

In the rest of this paper, we consider that rows of the Jacobian matrix
represent constraints and columns represent coordinates of the unknowns. We



classically denote by m the number of rows and by n the number of columns of
the matrix.

2.2. Generation of a witness

Most of the time, the sketch drawn by the user is a witness. Also, CAD parts
are rarely designed from scratch: usually, previous similar parts are re-used and
modified; the parameters values are changed and tuned for a new design, but
the constraint system is left unchanged. Thus, solutions to the previous CAD
parts give a witness.

Sometimes, however, no witness is available. For instance, when there are
many incidence or tangency constraints, the sketch may not fulfill them. It may
also happen that no previous sketch is available, for instance when designing
a part or a mechanism for the first time. In those cases, a witness has to be
computed. A witness is a root of the system F(X, A) = 0, where both X and
A are unknowns. See section 7.3 for more details about systems containing
incidence constraints.

For problems occuring in CAD-CAM, these systems are usually strongly
under-constrained: the solution is a manifold, e.g. a curve, a surface, etc. Thus,
several methods are possible in order to generate a witness. For instance, the
next section presents the most general method: it uses a complete solver, i.e. a
solver which finds all solutions (in real space R™). Even in the case of strongly
under-constrained systems, such a solver can easily be tuned to stop at the first
found root, and to explore the search space in some random order, so that the
first found root is a typical witness with probability 1. Notice that this tuned
solver is still complete in the sense that if it finds no root, then it is a proof that
there is none.

We mention now some incomplete but simple and fast solvers which can
be used to generate a witness by exploiting the characteristics of a witness:
under-constrainedness and genericity.

First of all, when one faces a sketch which does not completely fulfill all
incidence constraints, it is possible to use said sketch to initiate a Newton-
Raphson iteration?, an homotopy [24], an optimization method like Levenberg-
Marquardt, or Nelder-Mead simplex [34]. If no sketch is available, or if the
previous method fails, it is possible to start the iteration with random values
for X and A. Meta-heuristics [25] like genetic programming, particule swarm,
etc. can also be used with likely success, due to the strong under-constrainedness
of the system to be solved.

2.2.1. Using a complete solver to generate a witness

To compute a witness (X, Ay), we solve the under-determined system
{(X,A) : F(X,A) = 0} where both X and A are unknowns with a complete
solver, the subdivision solver presented in [9].

2The techniques, e.g. singular value decomposition [34], to account for non square Jacobian
matrices and under-constrained systems are well-known



The nonlinear monomials x2; and z;z; for ¢ < j are replaced by additional
variables x; ; and z; ;, which are enclosed in a polytope Bp(z;, i i, Zi ji<;) > 0
with halfspaces given by the non-negativity of relevant Bernstein polynomi-
als (Bernstein polytope). The quadratic constraint system becomes a polytope
S(xi, i, Tijici) > 0 after rewriting into the additional variables z;,; and
x; ;. The subscript D of Bp(z;, i, i ji<;) > 0 indicates that this polytope
depends on the domain D. In this way, bounds for the solution domain of
quadratic polynomials can be expressed as two linear programs

min z; and max x;
S(xi, i, 5i<j) >0
Bp(xi, i, Tijicj) > 0

Domain bounds are computed by linear programming in order to reduce the
current solution domain D. If the feasible set is empty, which is detected by
linear programming, then the current domain box contains no solution. Other-
wise, we can perform a sequence of reductions and bisections of domain boxes
until the domain box D = [x1,Z1] X ... X [Ty, Ty] is -small: (T7 — z;) < 0 for
all 7. These d-small boxes cover the solution set piecewise.

The subdivision solver requires a domain box to start the search. The in-
tervals for generic parameter values of constraints are easy to find: angle pa-
rameters cosf (cos 6 instead of 6 to avoid trigonometric functions in the solver)
are in [—1 4 ¢, —¢] or [¢,1 — €] with a small, arbitrary ¢; intervals for distance
parameters d can be obtained from magnitude bounds of the point coordinates.
Finding a bound on the magnitude of any root [44], would be necessary to prove
that the system has no solution. For the problems here, a bound on the point
coordinates is known beforehand.

In order to enumerate all solutions of a system, we used mid-bisection of the
largest interval in [9], which minimizes the height of the exploration tree while
cycling through dimensions. For the case of determining a single solution as fast
as possible, the choice of the smallest interval (greater or equal §) is beneficial
as setting variables to values allowing solutions improves the effectiveness of the
domain reduction step.

We select the next domain box (of smallest minimum side length greater
than ¢) for reduction and bisection at random. In this way, we find a solution
box containing a random solution, and we take the box center projected onto
the solution set as a witness.

As examples, we show two systems of different difficulty. In figure 3, two
triangles with a common point pg are specified by six side lengths. In the
random solution, the side lengths are all different. In figure 4, four points and
five lines with 10 point-line incidences are specified by four angle parameters and
a distance parameter. The left part shows a solution with symmetric and nice
shaped triangles, obtained by additional minimum distance constraints between
the triangle points. In the right part, a typical witness solution is shown, which
was found at random. It is used for further analysis.



Figure 3: “The butterfly”: 2D system with 5 points and 6 distance parameters d(po,p1),
d(p1,p2), d(p2,p0), d(po, p3), d(p3, pa), d(pa, po)-

Figure 4: 2D system of 4 points and 5 lines with 10 point-line incidences, 4 angle param-
eter angle(gp, cp), angle(cp, rp), angle(rq, cq), angle(cq,pg) and 1 distance parameter d(r,c).
Symmetric solution (left) and random, typical witness solution (right).



2.2.2. Discussion

One may question the usefulness of the witness method, when the complete
solver has to be called to compute a witness. In this case, it seems that the
complete solver is called two times instead of just one: why not simply call the
complete solver on the target system (i.e. the system to be solved: F(X, A,,) =
0) ? The answers are three: first of all, the complete solver is most of the time
much faster when it is used to compute a witness (assuming that it is stopped at
the first found root), since one only needs to satisfy the incidence and tangency
constraints; second, the witness will be used to analyze and decompose the GCS,
which will usually speed up the second step: solving the target system; third,
when the complete solver finds no root when computing a witness, it proves the
absence of roots for every parameter values, i.e. the problem does not come
from the parameters values A,,, but it has a more fundamental cause. Since
the problem of debugging such systems of constraints occurs very rarely and is
not the topic of this article, we just mention the principle of a solution: add
incrementally each constraint and search a witness; it allows to find the first
constraint which is the cause of the contradiction.

3. Incremental detection of redundancy

We already showed in section 1 that the detection of over-constrainedness is
a complicated yet essential problem in the field of geometric constraints solving.

In this section, we exhibit a greedy algorithm, based on the witness method,
which allows an efficient and robust detection of redundancy in geometric con-
straints systems. We prove that this algorithm produces a minimal well-constrai-
ned subsystem with the same solutions as the initial one.

We also show the usefulness of this extension of the witness method to en-
hance robustness of decomposition methods by an accurate computation of the
boundary system.

3.1. A greedy algorithm to detect redundancy in a GCS

It was already shown in [29] that it is possible to interrogate a witness in order
to detect whether a set of constraints is dependent or not. Indeed, it is possible
to compute the rank of the Jacobian matrix at the witness and to compare it
with the sum of the degrees of restriction of the constraints. However, finding a
maximal independent subset of a dependent set is not a trivial problem. Working
on the witness, the naive idea would be to try and remove constraints one by
one and, at each step, compute the rank again to determine if the constraint is
redundant with the remaining set. If the rank computed for S —c equals the rank
computed for S, then constraint ¢ is redundant and can be removed. Performed
that way, the removal of redundant constraints is expensive. Yet, considering an
incremental construction of the geometric constraint system allows to identify
the set of redundant constraints with no additional costs in comparison to the
basic detection of redundancy.

10



Indeed, consider a geometric constraint system S with no redundancy be-
tween the constraints. Applying the Gauss-Jordan elimination method on the
Jacobian matrix at the witness leads to a matrix J' = (I P) with I am xm
diagonal matrix and P a m x f matrix, f = n — m being the number of ac-
tual degrees of freedom of the system. This method has a known complexity of
O(min(n, m)nm). Let us now consider a system &’ with & C §’. In order to
know if S’ is generically over-constrained, one only needs to incrementally add
the geometric elements and the constraints (bearing in mind that a constraint
can only be inserted when the geometric elements it concerns are all in the sys-
tem) of &’— S8 to S and applying Gauss-Jordan again. Since the leftmost part of
the matrix J' is diagonal, the number of operations is at most 2 x min(m,n) x f:
for each row of I, each non-zero element of P must be multiplied and added to
the new row. The number of operations is in fact smaller, since the number of
zero elements in the new row is high.

Proceeding incrementally does not raise the number of operations: it only
changes the order of the operations. Indeed, the classical Gauss-Jordan elimina-
tion method consists in column-by-column operations: for each column ¢, divide
row ¢ by Jg ¢, then substract J, . times the new row from row r for every r, so
that column ¢ is a null vector except for the c-th value. With the incremental
calculus of the reduced row echelon form, one proceeds row by row: for each row
r, substract J,. . times row c for each ¢ < r, then divide row r by J,.,. so that the
r — 1 first elements of row r are zero and the r-th element is 1. Thus, the overall
complexity of the incremental computation of the reduced row echelon form of J
is also of O(min(n,m)nm). The pseudo-code for this incremental construction
of a maximal independent subset of the constraints is given at algorithm 1.

The incremental version of the Gauss-Jordan elimination has the same com-
plexity as the one-step version, but has a major advantage in our case: at each
step, when a constraint is inserted, one may compare the new rank with the
previous one and thus detect a redundant constraint. With exactly the same
number of operations as in the case of the classical Gauss-Jordan elimination,
one obtains the reduced row echelon form of the Jacobian matrix together with
the list of redundant constraints.

Let us now show that the order in which the constraints are considered in
the incremental construction of a maximal independent subset does not change
the solution set. Following [28], we note F,(S) the solution set of a GCS for a
valuation ¢ of the parameters, and omit ¢ when there is no ambiguity.

Proposition 1. Let S = (C, X, A) be a generically over-constrained GCS. We
consider a valuation ¢ of the parameters which make S consistently over-const-
rained, i.e. such that F,(S) # 0. Let 8" be a basis of S, i.e. a mazimal
non-over-constrained system such that F,(S) = F,(S"”). Let S’ be the system
obtained by applying algorithm 1 on S. Then, F(S') = F(S").

Proof We argue by mutual inclusion.

Step 1. F(S") C F(S").
S’ is obtained by discarding some constraints of S, without adding any

11



Algorithm 1: Greedy algorithm to compute a maximal non-over-
constrained subsystem

Input: ;
S =(C, X, A): a geometric constraint system;
W: a typical witness of S
Result: &’ C S: maximal non-over-constrained subsystem of S

R~ // set of redundant rows

J «— Jacobian matrix of S at W (of size m x n);
J' «— empty matrix with no rows and n columns;
foreach row r of J do

a add r to J' (we call v’ the new row of J');
foreach row i of J' except r’ do

b L v — JT’,/J. X 1

c if 7’ is a null row then

// the constraint corresponding to row r is redundant?
Remove row r’ from J';
R~ RU{r}

else
T — —r
L I

A’ C A « set of parameters appearing only in constraints of R;
return &' = (C/R, X, A/A")

12



Figure 5: “The kite™ over-constrained 2D  Figure 6: “The double-banana”™ famous

system with 4 points and 6 distances. With- counter-example to the extension of Laman’s

out the dotted constraint, the system is rigid. = characterization of rigidity in 3D. Each seg-
ment represents a distance constraint.

new constraint: &’ C S. Thus, a solution of S satisfies all constraints of S':
F(S) C F(Sh.

Since we consider only parameters valuations such that F(S) = F(S"), we
have F(S") C F(S').

Step 2. F(S') C F(S").

We have to show that the solutions of S’ satisfy all the constraints of S”,
i.e. that a solution of &’ is also a solution of §”. We argue by contradiction.

Let us consider a row r of the Jacobian matrix Js» of 8” which is not
redundant with the Jacobian matrix Js: of &’. If we try to add r to Js/ as we
do at lines a—b of algorithm 1, it will thus not be null at line c.

Since Js was obtained by applying algorithm 1 on the Jacobian matrix Jg
of S, row r is not redundant with Jg either: it thus corresponds to a constraint
which is not in § and cannot be deduced by the constraints of S. We then
have F(S) # F(S"”). By definition of S”, this is not possible. There is a
contradiction, and we thus have F(S") C F(S").

Conclusion. We have F(S§"”) C F(S’) and F(S') C F(S"”). Thus, F(S') =
F(S").

O

Notice that the constraints which are identified as redundant may be kept
and be used later in order to find, among the different solutions satisfying the
constraints, which correspond best to the user’s intent: redundancy can be
necessary to ensure solution unicity [13].

3.2. Examples

We here give a few examples of the application of algorithm 1.

Let us consider the 2D example of figure 5. The Jacobian matrix of this
system is shown in table 1. Consider the following witness: p1 = (2,7), p2 =
(5,6), ps = (1,1) and py = (6,3). The Jacobian at this witness is shown in
table 2, with a partial Gauss-Jordan elimination, since the sixth row has not
been modified. That is, table 2 shows the matrix obtained by performing the
incremental version of the Gauss-Jordan elimination, after inserting the sixth

13



Table 1: The Jacobian matrix for the system of figure 5.

T Y1 To Y2 3 Y3 T4 Ya
ri: dist(p1, p2) || z1-22 | y1i-y2 | T2-®1 | Yo-u1 0 0 0 0
ro: dist(p1, p3) || z1-z3 | y1-ys 0 0 T3-T1 | Y3-y1 0 0
rg: dist(pz, p4) 0 0 To-Ta | Y2-Ya 0 0 T4-T2 | Y4-Y2
ra: dist(ps, pa) 0 0 0 0 T3-T4 | Y3-Y4 | Ta-T3 | Y4-y3
rs: dist(pz, ps) 0 0 To-T3 | Yo-ys | T3-T2 | Ys-y2 0 0
re: dist(p1, pa) || z1-24 | Y1-ya 0 0 0 0 T4-T1 | Ya-y1

Table 2: The Jacobian matrix of table 1 at a witness. The Gauss-Jordan elimination method
was used on the first five rows. The sixth row is redundant (r¢ =5 — /)

Ty | Y | T2 | Yo | X3 | Y3 | Ta | Ya
i1t ]ofofo]o —% -1 3
il 0] 1]0]0|0 5|0 -3
sl 00| 1]0|O0 —5| ! 3
M|l 0o lojo]1]0]—%]0 —%
0 Jojo]o| 1| 2 |-1]-%
re||-1]1]0]0jJ0] 0| 1]-1

constraint but before performing Gauss pivoting on it, i.e. at the end of line a
of the algorithm. It is easy to see that the sixth row is redundant, since it can be
obtained by substracting the first row from the second one. Thus, we detected
the over-constrainedness.

For a more complex and famous example, consider the 3D system of the
double-banana (see figure 6). Since the associated Jacobian matrix is a 18 x 24
matrix, we do not represent it here, but applying algorithm 1 on the first 17 rows
and adding the last constraint of the double-banana leads to a zero-filled row
in the Jacobian matrix at the witness. If one considers a variant of the double-
banana with higher connectivity [27], our method still succeeds to efficiently
detect over-constrainedness: the degree of connectivity of the constraint graph
has no influence on the witness method. Likewise, the 3D examples by Ortuzar
(see figure 7) are correctly detected as over-constrained.

Moreover, the witness method correctly handles redundancy in under-const-
rained cases, where graph-based methods are helpless because they do not con-
sider geometric theorems. For instance, consider the 2D example of figure 8.
It is unlikely that a graph-based method can ever detect the fact that point y
is fixed, no matter what coordinates are given to point p and line [. Hence, a
graph-based method would see this system as a system with 8 remaining degrees
of freedom (5 for the three aligned points a, b and z, 1 for line [ traversing x
and 2 for point p) and would consider that adding a constraint distance between
points a and y removes a degree of freedom. The witness method, however, de-
tects that this new distance constraint is redundant and that the unknown y is
determined by the system though [ and p can be chosen at random.
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Figure 7: 3D examples (courtesy of Auxkin Ortuzar, Dassault Systémes) which confuse graph-
based methods but are detected over-constrained by our method. No three points are coplanar,
plain segments represents distance constraints, arcs represent angle constraints.

Figure 8: In 2D, given three aligned points a, b and = and for any point p and line [ traversing
x, y is unchanged: p1 = (ap) NI, p2 = (bp) N1, p’ = (ap2) N (bp1), y = (ab) N (pp’).

3.8. Computation of a well-constrained boundary system

The witness method and, more specifically, algorithm 1 can be used to
address an important problem in geometric constraint systems decomposition
methods: the computation of a non-over-constrained boundary system.

Recall [28] that a boundary system of a system S; C S with respect to the
system S; = S — &; is a system B such that solutions in F(Ss + B) are all
subfigures of a figure in S. Said otherwise, it is a system which can replace S;
without modifying the solutions when one looks only at the coordinates of the
geometric elements of S;. In decomposition methods [18], the computation of
a boundary system is essential since without it, the recombination of subfigures
can lead to figures which are not solutions of the system. Although not called
“boundary system”, this notion is present in all decomposition methods (e.g. it
is explicit in the FRONTIER solver [32] and corresponds to the virtual bond in
Owen’s method [33]).

Intuitively, the boundary system of S; with regard to S consists in the
system (C, X, A) with X the set of geometric elements shared by S; and Ss,
and C (and A) the set of all geometric information (and corresponding metric
values) which can be computed about elements of X in &;. However, this ap-
proach can lead to generically over-constrained boundary systems, eventhough
the associated parameters make them consistently over-constrained. If the con-
sidered solving method is sensitive to generic over-constrainedness, as are all
combinatorial solvers, this approach cannot be considered. The example of
figure 9 shows a basic example where a naive boundary computation leads to
over-constrainedness: here, S; is the system consisting in the p; ...ps points
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Figure 9: The boundary of the rigid subsystem with X = {p1,p2,p3,pa} is generically over-
constrained: it contains the system of figure 5

and the distance constraints represented by thick lines; the dotted lines rep-
resent constraints (of any type) concerning one of the p; points and one other
geometric element, not in S;. S is a rigid system. Hence, computing all the in-
formation about the elements of S; means computing, among other constraints,
all pairwise distances between the points p; ...p4: this leads to computing the
system of figure 5 as the boundary of S; with regard to the rest of the system,
i.e. an over-constrained system.

Using our greedy algorithm, computing a basis of the boundary system is
easy: one only needs to start with an empty boundary system and add the
different computable constraints one by one, discarding those which are redun-
dant with the ones already considered. In order to get all computable con-
straints, one needs to know the transformation group G such that the system
is well-constrained modulo G [36]: then, one only needs to compute all possi-
ble G-invariant constraints possible to express. For instance, if distances are
G-invariant (i.e. G is the rotations, the translations or the direct isometries),
one computes all point-point distances between two points of the system. The
exact process is given at algorithm 2. Proposition 1 proves that the order in
which the constraints are considered does not matter.

Algorithm 2: Computation of a maximal non over-constrained boundary
system

Input: ;
S =(C,X,A): a geometric constraint system;
S = (C1, X5, A1): a subsystem of S;
G: well-constrainedness group of &3
Result: B: maximal non over-constrained boundary system of Sy

Xy — {x € Xy|x is concerned by a constraint ¢,c € C/C1 };

Cp « set of all possible G-invariant constraints concerning elements of
Xb;

Ap « set of parameters appearing in Cy, ; // Values computed from &
B « result of algorithm 1 on (Cy, Xy, Ap);

return B
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An additional problem is the fact that the geometrical universe considered
by the solver may not allow to express the different constraints which can be
computed in Sp: for instance, it may be possible to compute, in S7, that a point
p is incident to a line [, but if the geometrical universe does not include point-
line incidence constraints, this constraint will not be considered. In such as
case, it is not possible to ensure that the computed boundary system is indeed
a boundary system. This issue is discussed in [28§].

4. Decision of anchor validity

4.1. Over-constraining anchors

Given a system S and a witness of S, we can show using the witness method
that it is not generically over-constrained or, if it is, compute a basis of S, that
is to say a maximal non over-constrained system which has the same solution
set than S when we consider valuation parameters which make S consistently
over-constrained. Let us therefore consider systems which are not generically
over-constrained.

S may still be under-constrained. Following the multi-group approach [36],
the under-constrainedness may be the result of the well-constrainedness of the
system modulo a transformation group: for instance, a rigid system is under-
constrained, since it may be translated or rotated without violating any con-
straint. In [29], we show how to use the witness method to detect that a system
is invariant under the action of translations and rotations, by recognizing these
groups in the kernel of the Jacobian matrix (see in particular table 1 of the
article). One can, likewise, recognize scalings by simulating their action on two
points. Hence, one may compute the dimension of the kernel of the Jacobian
and, if it is higher than the number of invariance groups identified within it,
conclude that the system is articulated: it is under-constrained even modulo
global groups.

When dealing with an articulated GCS, one may want to determine which
geometric elements should be anchored so as to get a finite number of solutions.
This research of an anchor is a kind of parameterization of a geometric con-
straints system, since it consists in giving a list of coordinates which should be
given as parameters and not considered as unknowns if one is to have a finite
number of solutions. It generalizes the notion of G-reference [28]: an anchor for
a G-well-constrained GCS is a G-reference.

We do not here discuss an algorithm to find a parameterization of an ar-
ticulated GCS, but we provide a procedure to decide if a set of coordinates is
a valid anchor. Indeed, a set of coordinates which has the same size as the
dimension of the kernel is not necessarily an anchor for the system, and may
be an over-constraining anchor if considering them as parameters leads to the
absence of solutions.

For instance, consider a simple rigid triangle. It has three degrees of freedom
modulo direct isometries, thus an anchor must contain three coordinates. A
classical anchor would be both coordinates of one point, and one coordinate
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Figure 10: Triangle well-constrained modulo similarities with six incidence constraints and
two line-line angle constraints

of another, but other anchors are valid as well: abscisses of two points and
the ordinate of another. But the set of all abscisses is not a valid anchor,
because in any rigid system, with two abscisses anchored, the abscisses of all
points are fixed. Likewise, consider the system of figure 10, which is well-
constrained modulo similarities. Since any line-line angle can be computed in
this system, any anchor containing the directions of two lines is not valid (e.g.
both coordinates of p;, directions of d; and ds).

4.2. A decision algorithm for over-constraining anchors

Over-constraining anchors are due to a dependency of the coordinates in the
GCS, that is to say that given a subset of an over-constraining anchor and the
constraints, one can compute the values of another subset of the anchor. We
here give an algorithm to detect such dependencies and hence decide whether a
potential anchor is over-constraining or not.

Obviously, the size of an anchor must be exactly the dimension of the kernel
of the Jacobian matrix of the system, i.e. the number of actual degrees of
freedom. We thus not discuss the cases of over-sized anchors (which are in
any case over-constraining) or under-sized anchors (which can still be over-
constraining and, when they are not, are not actual anchors either, since they
do not lead to a finite number of solutions).

_
When considering a valid anchor, the JV = 0 equation we mentionned in
section 2, once J put in reduced echelon form, is the following;:

(%1
U2
1 0 O --- 0 01,1 Op—m,1 U3
0 1 0 0 Qaq.2 te Qp—m,2
0 0 1 0 a3 tee Qn—m,3 : =0
Um
Van_—m
o o0 o0 --- 1 Qm - On—m,m
Va,

N
In this notation, the n — m last elements of vector V' are denoted v,, ., to
Vg, . There are as many v,, elements than the dimension of the kernel of J.
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Let us now imagine that after the ¢ — 1-th step of the Gauss-Jordan elimi-
nation (the upper left (i — 1) x (i — 1) matrix is diagonal), it is impossible to
find a non-zero pivot. It means that the i-th column is a linear combination
of the first ¢ — 1 columns. Permuting this column with one of the first ¢ — 1
columns will not change the problem: the new i-th column will (by definition of
linear dependency) be a linear combination of the new leftmost ¢ — 1 columns.
Likewise, permuting the i-th column with a column with an index between i+ 1
and m will only postpone the problem: if it is a linear combination of the first
1 — 1 columns, it is also a linear combination of the first ¢+ — 1 + k& columns if
k>0.

It will thus not be possible to diagonalize the left part of the Jacobian matrix
unless the i-th column is permuted with one of the n — m rightmost columns.
This condition is necessary but not sufficient, since some of the last n — m
columns can themselves be linear combination of the first i — 1 columns.

If one does not manage to diagonalize the m x m left matrix of the Jacobian,
it means that the parameterization consisting in anchoring the coordinates cor-
responding to the n — m rightmost columns is not valid: it means that it is
not possible to express the variations of the n first coordinates as a function of
those considered as parameters. Indeed, once the product J Vv performed, the
i-th row of the equation can be written

Vi + Q1 X Vap_py T F Qi X Vgy =0

and thus
Vi = =1 X Vg — " — Qpem,i X Ugy (1)

Said otherwise, we can express v; (the variations of the coordinate ;) as a
function of v,, _,, ...v,, (the variations of the coordinates x,, . ...xq, ). This
is the exact definition of an anchor: if the z,, coordinates are fixed, the other
elements are also fixed. Thus, if it is not possible to express the first m columns
as function of the n — m last columns, then the corresponding parameterization
is an over-constraining anchor.

A simple method to decide if a subset of the coordinates forms a valid an-
chor is thus to do the necessary permutations in order to have the corresponding
columns at the right of the matrix, and then to perform a Gauss-Jordan elimi-
nation in order to attempt to diagonalize the leftmost part of the matrix. Upon
success, we can conclude that we have a valid anchor; upon failure, we have an
over-constraining anchor. The pseudo-code for this decision method is given at
algorithm 3.

The complexity of this algorithm is that of the Gauss-Jordan elimination
method, i.e. O(min(m,n)mn). Since we are sure that the system is not gener-
ically over-constrained, n > m, and the complexity is thus O(m?n).

5. Detection of maximal well-constrained subsystems in articulated
systems

In section 4, we address the issue of articulated systems, i.e. GCS which
are under-constrained even modulo global transformation groups (translations,
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Algorithm 3: Algorithm to decide if a subset of the unknowns is a valid
anchor

Input: ;

S =(C,X,A): a geometric constraint system;

W: a typical witness of S;

A: a subset of the coordinates of the elements of X
Result: Boolean indicating if A is a valid anchor for &

J «— Jacobian matrix of S at W (of size m x n);
k —n;
for i from 1 to m — |A| do
while column i corresponds to a coordinate in A do
Permute column i of J with column k;
L k—k-—1,
if there is a non-null pivot in column i then
| Perform Gauss-Jordan elimination on column

else
| return false

return {rue

rotations, scalings, and their combinations), by giving an algorithm to decide
whether a subset of the coordinates of the unknowns forms an anchor of the
system. In this section, we also address the handling of articulated systems
by giving means of identifying maximal G-well-constrained subsystems for the
different groups G mentioned above.

We begin in section 5.1 by explaining the identification of maximal rigid sub-
systems (MRS), then extend this in section 5.2 to the identification of maximal
G-well-constrained subsystems (MGS) for other groups than the direct isome-
tries and explain what are the necessary conditions on a transformation group
G for our method to work. Finally, in section 5.3, we provide a skeletonization
algorithm based on the identification of MGS.

For the sake of simplicity, we consider 2D systems in the rest of this section
and consider thus that a rigid system has 3 degrees of freedom. Nevertheless,
our algorithms work exactly the same way in 3D.

5.1. Identification of mazimal rigid subsystems

The basic idea of our MRS detection algorithm is to study which geometric
elements are fixed when one anchors a reference for the direct isometries. As
explained in section 4, within the witness framework, anchoring a reference for
the direct isometries consists in switching columns in the Jacobian matrix so as
to put the three columns of the reference in the right-most positions. Recall (see
equation 1) then that after performing a Gauss-Jordan elimination method, the
left matrix of the Jacobian matrix is diagonalized and, thus, the i-th row of the
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Figure 11: 2D articulated chain made of three rigid triangles. Distance constraints are im-
plicitly represented by the segments.

N
equation JV = 0 can be read as
Vi = —014 X Vg _,, — 0" — Qp—m i X Vg,

With a rigid GCS in 2D, there are 3 v,, elements. For instance, table 2
shows the reduced row echelon form of the Jacobian matrix at the witness for
the GCS of figure 5. Since this GCS is rigid (with the redundant constraint
removed), three columns do not belong to the identity part of the matrix: they
correspond to coordinates x4, y4 and y3, which form a reference for the system.
All other coordinates can be expressed in function of these three coordinates. For
instance, the first line of the matrix must be interpreted as 1 — %y'g — 24+ %y}; =
0, i.e. @1 = 2yjs + @4 — 24js.

When the GCS is not rigid, the size of an anchor is higher than 3. There
are then more than three columns at the right of the identity sub-matrix after
performing a Gauss-Jordan elimination. Table 3 shows the reduced row echelon
form of the Jacobian matrix at a witness for the GCS of figure 11. Notice that
columns y, and y4 were moved to the right, since it would have been impossible
to find a pivot and finish the Gauss-Jordan elimination otherwise. The variations
of all coordinates can be expressed as functions of ¥, %4, ¥s, ©7 and 7. Indeed,
an anchor for this GCS can consist in point p7, direction p7-pg, direction ps-p4
and direction p3-ps.

An important result to identify MRSs comes from the zeros in columns >
and 4. Rows 7, 8 and 9 of table 3 can be interpreted as the fact that the values
of #5, y5 and 2¢ depend only on those of 4g, £7 and 1. Put differently, if one
anchors a reference for the direct isometries by pinning down p7 and direction
p7-ps, then points pg and ps are fixed, i.e. pspgp7 is a rigid subsystem.

A naive algorithm immediately arises, based on anchoring a reference for the
direct isometries, ¢.e. switching columns to have the corresponding columns on
the right of the Jacobian matrix and identifying the parts of the GCS which are
fixed. The pseudo-code is shown as algorithm 4. In this algorithm, anchoring
a reference for the direct isometries means switching columns so as to have the
columns corresponding to the reference at the right of the Jacobian matrix. In
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Table 3: Reduced row echelon form of the Jacobian matrix at a witness for the GCS of figure 11

Y2 Ya Y6 7 Y7

Ti | Y1 | T2 | F3 | Ys | T4 | Ts | Y5 | Te

7 1 lo]Jo]Jo]o]o]o]o]o §7 %10 —Q}é% -1 —lﬁ
T 0 | 1|0 10 0 0| 0|00 |53 3 0 -
T ojlo|1|lo}]o|o]|o0o|oO0]|oO 4 % T; -1 —%
A 0 0 0 1 0 0 0 0 0 0 5 71§ -1 73—2
r} ofofo|o | 1|0 | 0| O0]oO 0 3 -5 | 0| -5
g 0 0 0 0 0 1 0 0 0 0 3 —§ -1 | -4
rh 0 0 0 o | oo 1 0 0 0 0 -3 -1 2

T4 ojlo|of|loj|o|o]|o0o|1]oO 0 0 -5 0 -3
g 0 0 0 ool o 0 0 1 0 0 —L -1 z

order to not identify the same MRS twice, we anchor references only on untagged
parts of the GCS, that means that at least one of the columns cannot be tagged.

Algorithm 4: Naive MRS identification algorithm

Input: ;
S =(C, X, A): a geometric constraint system;
W: a typical witness of S

Result: Set of MRSs of S

M —0 // set of MRSs
J < Jacobian matrix of S at W;
1« 0;

repeat

Anchor a reference for the direct isometries on an untagged part of S;
Perform a Gauss-Jordan elimination;
Tag with label ¢ the columns of J which correspond to coordinates
depending only on the 3 last columns;
M — M U {subsystem corresponding to the columns with tag i};
1—1+1
until all the columns are tagged;
foreach constraint c € C' do
if there is no system in M which includes ¢ then

| M «— M U {subsystem corresponding to c}

r(;turn M

The cost of this algorithm depends on the number k& of MRSs: for each of

them, it performs a Gauss-Jordan elimination only once, so that the total cost is
O(kmin(n, m)nm), that is O(km?n) since the system is not over-constrained.
This cost can be reduced to O((k + m?n), i.e. O(m?n), by not starting the
Gauss-Jordan elimination from scratch for each MRS. At the end of line a in
the algorithm, the Jacobian matrix at the witness is in reduced row echelon
form. By switching the columns in an appropriate way, one needs only perform
the Gauss-Jordan pivot operation on two to three columns. Indeed, by looking
at the constraint graph, it is possible to select a new anchor for the GCS which

sat

isfies the following conditions:
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e it includes a reference for the direct isometries which is not totally tagged,
e cach identified MRS is fixed, i.e.

— the reference includes three coordinates in the MRS,

— or the MRS shares a geometric element with a fixed MRS and the
reference includes a coordinate in the MRS.

To select this reference, one only needs to consider a geometric element
which is in an already identified MRS and which is linked by a constraint to
an untagged element. More cases occur with systems for which the constraint
graph has several connected components or with systems with implicit points
(e.g. similarity-invariant systems with only lines and angles), but the principle
remains the same. Thus, in most cases, one only needs to switch two columns, so
as to change the point in the reference. Three switches happen with disconnected
graphs. Algorithm 5 shows how to perform MRS identification. For the sake of
simplicity, the algorithm is described for articulated GCS made of several MRSs
connected by points, but it is easily extended to systems with other kinds of
geometric elements.

Algorithm 5: MRS identification algorithm for an articulated system

Input: ;
S =(C,X,A): a geometric constraint system;
W: a typical witness of S

Result: Set of MRSs of S

J « Jacobian matrix of S at W,
Anchor a reference for the direct isometries and identify and tag a first
MRS;
repeat
Select a tagged point linked by a constraint to an untagged element;
Switch the columns of this point with the columns of the point in the
last reference;
Perform Gauss-Jordan elimination on the two latter in order to
identify a new MRS;
Tag the new MRS
until all the columns are tagged,;
foreach constraint c € C' do
if there is no system in M which includes ¢ then

| M «— M U {subsystem corresponding to c}

return M

In the case of open chains, i.e. GCS where all cycles in the constraint
graph are included in rigid subsystems, an even less costly algorithm exists, by
using both the constraint graph and the Jacobian matrix. After performing
the Gauss-Jordan elimination, a first MRS is identified by considering all the
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coordinates which depend only on the reference. From there, one can consider all
the coordinates which depend on the reference and on one additional parameter.
In the matrix of table 3, with the additional parameter 14, we can fix x3, 13
and #4. Taking a look at the constraint graph, we notice that the previously
identified MRS (pspsp7) shares only one point with the rest of the system and
thus cannot “transfer” more than two degrees of freedom.

This enables us to remove the MRS and exchange the three parameters g,
Z7 and g7 with parameters z5 and %5 in the Jacobian matrix. The numerical
values are not important in this process: we consider that all the values of both
columns are non-zero. With this new matrix, one notices that x5, ys and y4
form a reference for the direct isometries and that by anchoring the variations
of this reference, #3, 33 and x4 are fixed, i.e. pspyps is a rigid system. We
continue this algorithm by noticing that this system shares only one point with
the rest of the system, removing it and replacing it with non-zero-filled columns
23 and y3 and thus identifying the last MRS p1paps.

When the last identified MRS shares more than one point with the rest
of the system, two cases occur: either the removal of the MRS leads to two
disconnected graphs (i.e. the MRS is in the middle of the articulated system)
and one thus continues the algorithm separately on each part of the graph; or
the MRS belongs to a non-rigid closed chain.

When one uses this algorithm on a GCS containing non-rigid closed chains, it
leads to cases where one cannot detect the MRSs of the closed chains, because of
the inter-dependence of the rigid subsystems of the chain. After identifying the
first MRS of the closed chain, the algorithm is stuck because it is not possible to
identify another system which depends only on three parameters. In this case,
we get back to algorithm 5 to identify the different MRSs of the closed chain.

5.2. Ezxtension to other transformation groups

Algorithm 4 can be adapted to identify maximal G-well-constrained subsys-
tems, for transformation groups G other than the direct isometries.

There are several conditions on G. First of all, if one wants to check that the
whole system is G-invariant, in order to know if the system is under-constrained
modulo G, one needs to be able to simulate the action of G in the Jacobian
matrix. In [29], we showed how to simulate the action of the translations and
rotations, which enables the recognition of these groups in the kernel of the
Jacobian matrix. As mentioned in section 4, it is possible to likewise simulate
the action of scalings. In order to simulate a scaling centered on point O and
with a scaling factor of f, we apply a translation on a point p;, with direction
O*pq and a norm , and another translation on a point ps, with direction 0772
[|Op2 ]|

—
[10p1|
Second, one needs to be able to anchor a G-reference, which means one

must be able to select columns of the Jacobian matrix which correspond to a
G-reference. We already described how to do this for the direct isometries. In
order to anchor a reference for the similarities, for instance, one needs to consider
as fixed the coordinates of two points in 2D, with an additional coordinate of

and a norm
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a third point (in order to simulate the anchoring of the directions between the
two fixed points and the third point) in 3D.

With these two conditions fulfilled, adapting algorithm 4 to identify maximal
G-well-constrained subsystems (MGS) is straightforward: instead of anchoring
references for the direct isometries, one anchors G-references. Beforehand, one
only needs to remove all non-G-invariant constraints. The pseudo-code is given
at algorithm 6.

Since we use the genericity hypothesis, we consider here that the parameters
are independent. Otherwise, removing the G-invariant constraints might lead
to losing information: for instance, if two constraints have the same metric
parameters, they induce an equality constraint, but not under the genericity
hypothesis, since using other values of the parameters removes this equality.

Algorithm 6: Naive MGS identification algorithm

Input: ;
S =(C, X, A): a geometric constraint system;
W: a typical witness of S;
G: a transformation group
Result: Set of maximal G-well constrained subsystems of S

M —10 // set of MGSs
J < Jacobian matrix of S at W;
1« 0;

foreach constraint ¢ € C' do
if ¢ is not a G-invariant constraint then

L C=Cle)

repeat
Anchor a G-reference on an untagged part of S;
Perform a Gauss-Jordan elimination;
Tag with label ¢ the columns of J which correspond to coordinates
depending only on the columns of the G-reference;
M — M U {subsystem corresponding to the columns with tag i};
1—1+1
until all the columns are tagged;
foreach constraint c € C do
if there is no system in M which includes ¢ then
Anchor a G-reference including c;
Identify the corresponding MGS m;
M — MU{m.}

return M

It is possible, as was the case for algorithm 4, to adapt this algorithm in order
to perform fewer steps of the Gauss-Jordan elimination, by taking into account

the constraint graph and reducing the number of column switches between two
MGS.
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Also, notice that it is possible to consider a rigid system and to make it
well-constrained modulo the similarities, by replacing the unit of distance con-
straints with a parameter. This is useful in industrial CAD applications, where
previously solved systems are reused at a different scale. What more, in such as
case, a witness is directly available: a solution of the previously solved system.

5.8. Skeletonization of a geometric constraint system

In this section, we propose an algorithm to skeletonize a geometric constraint
system, that is to say transform a system S into a system S’ such that | F(S)| =
|F(S")| and such that any figure in F(S’) is a subfigure of a figure in F(S).
The basic idea is to replace maximal G-well-constrained subsystems with their
boundary system.

Skeletonization algorithms already exist in geometric constraints solving:
graph-based retropropagation algorithms [5, 31, 40] remove geometric elements
and constraints that can be built if the rest of the system is built, until they
get a system which needs to be built from scratch. This remaining system,
the skeleton, has as many degrees of freedom as the initial system, and any
variation of the coordinates of an element in the initial system can be expressed
as a function of the variation of the coordinates of the skeleton elements.

The interest of skeletonization also lies in the graphical feedback it gives to
the user about the flexibility of the system: for instance, if the skeleton of the
GCS is made of two bars linked by a common point, the user instantly sees that
the GCS is made of two rigid systems which can rotate around their common
link.

In order to transform a GCS into its skeleton, we use algorithms 6, in order
to identify maximal G-well-constrained subsystems, and 2, in order to compute
the boundary of the identified MGSs. The algorithm consists identifies all MGSs
and replaces them with their boundary. The pseudo-code is given at algorithm 7.

Algorithm 7: G-skeletonization of a GCS
Input: ;
S: a geometric constraint system;
W: a typical witness of S;

G: a transformation group
Result: G-skeleton of S

J « Jacobian matrix of S at W;
M « list of MGSs of § identified by algorithm 6;
foreach MGS k = (Cy, Xy, Ax) € M do
B = (Cy, X3, Ap) < boundary system of k& computed with algorithm 2;
if Xb 7é Xk then
| Replace k with B

The complexity of algorithm 7 is as follows. It uses algorithm 6, which is
in O(m?n). For each MGS of the system, it uses algorithm 2, which is also in
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O(m?n). If there are k MGSs, the overall complexity is thus in O(km?n).

6. W-decomposition of a GCS

The previous section gives algorithms to identify all MGSs of a GCS. Having
such an algorithm leads to a natural method to decompose a G-well-constrained
geometric constraint system. We call this method W-decomposition and a sys-
tem which can be decomposed by this method is said to be WW-decomposable. In
this section, we explain the principles of W-decomposition and give examples.

Algorithm 6 identifies maximal G-well-constrained subsystems, i.e. if a MGS
can be decomposed in several G-well-constrained subsystems, this will not be
detected. The basic idea of W-decomposition is to remove constraints from the
system and see if it breaks the MGS in non-trivial MGSs, i.e. MGSs which are
not limited to their boundary (e.g. a system limited to a point-point distance).
If it does, then we use WW-decomposition on each non-trivial MGS. Algorithm 8
gives the pseudo-code of the algorithm.

Algorithm 8: YW-decomposition

Input: ;

S =(C, X, A): a G-well-constrained geometric constraint system;

W: a typical witness of S
Result: Tree of G-well-constrained subsystems of S
repeat

a Select a constraint ¢ € C,
L « list of the MGSs of (C\¢, X, A) identified using algorithm 6;
while L contains only trivial MGSs do
L Select a constraint ¢ which was not selected yet;
L < list of the MGSs of (C\¢, X, A) identified using algorithm 6

until all constraints have been tested or we find a non-trivial MGS,

if L contains only trivial MGSs then
| return a leaf labeled with S

else

A « childless node labeled with S;

foreach S; € L do

c Root the W-decomposition of S; as child of A,;
S—8-3G8;

d S «— S+ boundary of S;;

e Root the W-decomposition of S as child of A;

L return A

Let us illustrate this algorithm on the example of figure 12a, which represents
the constraint graph of a 2D rigid GCS. The graph is 3-connected and has two
K3 3 subgraphs, connected by three “middle” edges. Algorithm 6 detects the

27



b

Figure 12: 2D systems where edges represent point-point distances; a: 3-connected constraint
graph made of two K3 3 graphs connected with 3 constraints; b and c: graphs obtained by
replacing MRSs identified by algorithm 8 by their boundary with respectively edges e; and
eo removed.

rigidity of the whole system. Let us consider the removal of two constraints at
line a of algorithm 8: dotted edges e; and es.

If we remove edge e, the use of algorithm 6 at line b identifies four MGSs:
the rigid K3 3 subsystems, and each edge between them. The latter are equiv-
alent to their boundary. Replacing the rigid hexagons by their boundaries and
reintroducing edge e; leads to the graph of figure 12b (note that edge e; must
be taken into account for the computation of the boundaries). The recursive use
of W-decomposition (line c¢) on each non-trivial MGS leads to the knowledge
that they are not W-decomposable, as does the recursive use on the system of
figure 12b (line e).

If we do not remove edge e; but ey instead, the left K33 subsystem of
figure 12a is no longer rigid. The identification of non-trivial MGS thus only
identifies the hexagon on the right of figure 12a. Once it is replaced by its
boundary, we obtain the system shown on figure 12c. The recursive use of W-
decomposition will then lead, after removal of one of the three “middle” edges,
to the identification of the second rigid hexagon and thus to the system shown
on figure 12b.

Let us consider the 3D example of figure 13, a generalized Stewart plat-
form [39]. It consists in two platforms (the rigid hexagons in thick lines) linked
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Figure 13: Generalized Stewart platform: both thick hexagons are rigid; the other segments
indicate distance constraints.

by six distance constraints. The whole system is rigid, which is easily detected
by the witness method (it is also characterized as rigid by the 3D extension of
Laman’s theorem [23]). Since any rigid subsystem can be identified by algo-
rithm 6, no matter how it is composed, the WW-decomposition will identify:

e both platforms as rigid if one of the six distance constraints is selected;

e one platform as rigid if a constraint in the other platform makes it under-
rigid.
Of course, whatever constraint is selected first, both platforms will eventually
be identified as rigid. Notice that whatever rigid subsystem is linked to the
platforms, it will be identified as rigid and replaced by its boundary, i.e. a
minimal rigid hexagon.

Execution time depends on the choice of the removed constraint. In the
worst case, all constraints are tested: m times the algorithm 6 is used, thus the
complexity is O(m3n).

Our algorithm is more powerful than algorithms found in the literature, for
several reasons:

e first of all, it is independent of the connectivity of the constraint graph.
For instance, figure 14a gives an example of a 4-connected constraint graph
which is WW-decomposable, no matter what is inside the inner blue part as
long as it is rigid ; we may likewise build YW-decomposable systems with
a k-connected constraint graph, for any k, by considering two polygons
with k vertices, linked by k constraints, one of the polygons being rigid
(see figure 14b);

e second, it is also not based on a cluster formation. Since the graph of
figure 14c is not decomposable by current graph decomposition methods,
the system of figure 14a, with the inner part replaced by figure 14c, will
also lead to a decomposition failure for these methods, whereas it is W-
decomposable.

Ultimate decomposition consists in yielding a triangular equation system.
For algebraic systems, Ritt-Wu decomposition [1] or Grobner bases with lexical
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Figure 14: 2D rigid examples for the JW-decomposition: each vertex is a point and each
edge represents a distance constraint. a: W-decomposable 4-connected GCS (the blue sub-
system is rigid); b: W-decomposable k-connected GCS (the blue subsystem is rigid); c: W-
indecomposable system; d: there are YW-indecomposable systems with an arbitrary number of
points.

order lead to such decompositions, but unfortunately, they are untractable in
the CAD domain. On the other hand, YW-decomposition is not as powerful as
these algebraic methods since it is possible to construct an infinite family of
W-indecomposable constraint systems like the one depicted in figure 14d: there
is no constraint in this system such that its removal produces a system with a
MRS bigger than a point-point distance. But, on the positive side, it is easy to
see that

e all Owen-decomposable systems [33] are W-decomposable (that is, artic-
ulation pairs are detected by the choice of the deleted constraint)

e all constraint systems which are decomposable by cluster formation meth-
ods or on the search of minimal rigid parts, are also W-decomposable.

We think that the ratio of efficiency to power of decomposition is good enough
to give good results in CAD even in the 3D case.

7. Robustness issue

7.1. The problem

Our method assumes that it is possible to compute the rank of a set of
vectors, given by their coordinates. It is a basic problem in computerized linear
algebra with well-known methods. Only at first glance does it seem to be an
easy problem.
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Since the rank is not a continuous function, it is not computable in the sense
of Computable Analysis [42]. In short, Computable Analysis represents real
numbers with sequences of nested intervals; the bounds of these intervals are
long float numbers, typically represented as m2¢, m € Z,n € Z; the mantissas m
are calculated with an arithmetic managing long integers. The width of intervals
enclosing the real numbers can be made arbitrarily small (within the limitation
of computing power and memory), but it is never zero. This arithmetic can
handle rational numbers, algebraic numbers, and transcendental numbers.

It is semi-deterministic in the following sense. On the one hand, it can
detect that a number is non-zero: compute a sufficiently precise interval which
does not contain zero; on the other hand, it cannot detect that a number (e.g. a
Gauss pivot, or a determinant) is zero when this number is null: it would require
reaching the interval [0, 0], which is impossible in finite time. For example, this
arithmetic can compute intervals enclosing v/2 with great accuracy, but intervals
for (v/2)? — 2 will never be [0, 0].

Similarly, this arithmetic can decide that two distinct real numbers are dif-
ferent, but cannot decide that two equal numbers are equal. A consequence is
that it is possible to numerically prove that a set of given vectors are linearly
independent (when they are), but it is not possible to numerically prove that
they are dependent when they are.

If a rational witness is available, an exact rational arithmetic can be used.
The rank of rational vectors is computable, and this approach is practical. It is
explored in [29] with a number of examples.

Sometimes a rational witness is not available; it also happens that some
problems have no rational solution, and thus no rational witness at all. Sec-
tion 7.3 discusses which problems have rational solutions, and which have not.
Notice that no numerical solver provides an exact rational witness, even when
it exists: the solution returned by a numerical solver is either a floating-point
approximation, or some small box containing an isolated root, or some small
box of a cover of the solution manifold.

A theoretical solution is to resort to some exact algebraic arithmetic, when
the constraints system is algebraic. However, this approach is not practica-
ble and its relevance is questionable. Section 7.2 presents a more reasonable
solution.

7.2. Numerically typical witnesses

The simplest and radical solution to this problem is to require the witness
to be not only typical, but also to be numerically typical. For example, for three
non collinear points A, B, C, the angle between AB and BC must be sufficiently
different from 7 and from 0 in a numerically typical witness. Then it suffices to
use the classical epsilon heuristic: if the angle between AB and BC' is close to
wor 0, i.e. the 3 points A, B,C' are numerically very close to alignment, then
they indeed are collinear, and the difference from 0 or 7 is due to numerical
inaccuracy.

This requirement seems to be a reasonable prerequisite for a witness. All
dynamical geometry softwares (Cabri Géomeétre, Cinderella, GeoGebra, etc.)
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Figure 15: System with only point-line incidence constraints and without any rational solution

which are used for geometry teaching already rely on this requirement, and use
it routinely: the student or the teacher interactively specifies some geometric
construction (say with ruler and compass), then interrogates the dynamical ge-
ometry software to know if some property (alignment of three points, cocyclicity
of four points) holds. The figure is considered as a numerically typical witness,
and the request is answered considering the coordinates of points, lines and
circles in the figure.

Luckily, the context of geometric constraints solving is a situation where the
epsilon heuristic is sufficient: in Computational Geometry, where people cannot
choose their data, the epsilon heuristic is not sufficient to achieve robustness.

7.8. Geometric problems and rational realizations

Some geometric problems have no rational solution, thus no rational witness,
for instance a regular pentagon. More surprisingly, it is possible to build 2D
problems which involve only point-line incidences and which have no rational
solution. For instance the pentagon in figure 15 involves no metric constraints at
all (neither distance nor angle are specified) but it is projectively equivalent to
the regular pentagon, or in other words, it is a perspective of a regular pentagon;
this pentagonal star is not realizable in the rationals. Almost all regular n-
polygons, as well as their projective variant which involves only point-incidences,
are non realizable with rationals, exceptions being n = 3,4, 6; for instance an
equilateral triangle has the rational realization: (1,0,0),(0,1,0),(0,0,1) and
this extends easily to regular hexagons. The latter “cheating” trick (using 3D
coordinates for a 2D problem) cannot be used for pentagons, heptagons, etc.
but the proof is omitted for conciseness.

To sum up, some 2D problems involving only point-line incidences have no
rational solution, and thus no rational witness. Of course, if such a system
is a subsystem of the system to be solved, whether there are other types of
constraints or not, the absence of rational solutions and witnesses holds.

Other less artificial 2D geometric problems without rational solution involve
metric constraints, for instance bisecting lines (i.e. equal angles): the bisecting
line of two rational vectors is generally non rational, because some square root
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is involved to solve the underlying quadratic equation. In contrast, the bisector
of a segment joining two rational points does not require a square root and is a
rational construction.

Let us now consider 3D problems. As shown by Steinitz’s theorem [35], every
3D Eulerian polyhedron (i.e. fulfilling Euler-Poincaré’s formula: V — E 4+ F =
2, where V, E, F are the numbers of vertices, edges and faces) is realizable
with a 3D convex polyhedron with rational coordinates only (thus with integer
coordinates only, after some scaling). A cubic time algorithm computes a Tutte
barycentric embedding of the planar graph? of the polyhedron, then lifts vertices
in 3D [35]. In contrast, 4D polytopes (convex polyhedra) are generally not
realizable with integer coordinates only [35]. Less is known for 3D non Eulerian
polyhedra (i.e. with through holes, such as a torus). However, in spite of their
intellectual appeal and of the fact that some of them have a known complexity,
these problems are seldom seen in CAD/CAM designs. Thus, the impossibility
to handle them is only a meager shortcoming of our method.

8. Conclusion

After proposing a way to generate a witness, we showed in this paper how
the witness method could be used to detect over-constrained systems without
any additional computational cost by an incremental Gauss-Jordan elimination
of the Jacobian matrix at the witness. This allows the computation of a well-
constrained boundary inside the decomposition method.

We propose algorithms to validate anchors, i.e. check that fixing the position
of a subset of the coordinates of the geometric elements fixes all coordinates. We
gave algorithms to identify all maximal well-constrained subsystems of a GCS,
i.e. the system itself if it is well-constrained, or its GG-well-constrained parts if
it is articulated.

From this algorithm, we deduced a skeletonization algorithm, allowing to
compute a minimized version of the GCS, with the same degrees of freedom,
based on the replacement of maximal G-well-constrained subsystems with their
boundary. We also deduced a method, called YW-decomposition, to decompose
a G-well-constrained GCS into the set of all its non-trivial G-well-constrained
subsystems, based on the removal of a constraint and the computation of the
new maximal G-well-constrained subsystems.

The method to detect over-constrainedness is efficient (the computation of
the reduced row echelon form of the Jacobian matrix is in O(min(m,n)mn))
and is not tricked by mathematical theorems, even when these theorems are
unknown to the developer. The decision algorithm for the validity of an anchor
is in O(m?n). The MGS identification is also efficient (O(m?n)) and works in
2D or 3D. W-decomposition is performed in O(m3n) in the worst case.

For conciseness reasons, the algorithms we described work on 2D systems,
but they can be easily extended to 3D systems. Complexity of the algorithms

4Bach vertex is the barycenter of its neighbors, except for three outwards base vertices.
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is independent of the dimension.

As it is, the method has been implemented and tested on several examples.
However, some work could be done in order to improve its efficiency and its
robustness. For instance, the infinitesimal flexions are discovered by computing
the kernel of F'(X,A) on a witness, this calculus can be confirmed by using
the Hessian matrix of each equation of the system. The nullity of the product
ViH (X, A)V> should confirm or infirm this fact: contradiction would mean that
our witness is not generic and small perturbations could be used to remediate
this situation.

Since reliabilty of the witness is a crucial point in our method, the previous
point can re-inforce the confidence we have in the witness. some other tracks can
be explored, like computing a witness fulfilling exactly the boolean constraints
(incidence constraints, equality of distances, etc.): that is solving constraint
systems modulo the group of the projective transformations.

Another different approach could consist in turning the parameters into vari-
ables and apply the method as it is. That way, the relationships between pa-
rameters could be detected and the flexions could be quantitatively estimated;
this could be useful for engineering studies.

Further research needs to be done in order to have efficient VWW-decomposition.
The example of figure 12 shows that some edges are better than others for the
removal (line a of algorithm 8). Some promising tracks are the computation of
a minimum chain covering and the search for constraints which appear in only
a few chains, or methods based upon matroids intersections.

More promising than those enhancements of the WW-decomposition method,
which would not modify the complexity of the algorithm, is a multi-group W-
decomposition algorithm. Algorithm 8 works on any transformation group
which fulfills the conditions cited in section 5.2, but only one such group at
a time. To establish a multi-group algorithm, ¢.e. an algorithm decomposing
a system into its Gj-well-constrained subsystems, then automatically switching
to another group G when necessary, would enhance the resolution power of the
algorithm. However, defining an interesting order between the transformation
groups is not as straightforward as it may seem, and we intend to inquire into
this.
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