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Abstract — Line-of-sight (LOS) computation is important for
interrogation of heightfield grids in the context of geo information
and many simulation tasks like electromagnetic wave propagation
and flight surveillance. Compared to searching the regular
grid directly, more advanced data structures like a 2.5d kd-tree
offer better performance. We describe the definition of a 2.5d
kd-tree from the digital elevation model and its use for LOS
computation on a point-reconstructed or bilinear-reconstructed
terrain surface. For compact storage, we use a wavelet-like
storage scheme which saves one half of the storage space without
considerably compromising the runtime performance. We give an
empirical comparison of both approaches on practical data sets
which show the method of choice for CPU computation of LOS.

Keywords — line-of-sight computation, heightfield interrogation, kd-
tree data structure, pyramid algorithms

I. INTRODUCTION

Digital terrain models (DTM) can be represented in two
forms, as a triangulated irregular network (TIN) and as a
regular height grid (DEM). With the acquisition by airborne laser
altimetry, especially the latter are available in good resolutions
(30m/10m resolution for the USA [1] and 1km resolution for
the earth [2] in publicly available datasets). Triangular irregular
networks can be generated from DEMs by simplification for
compact lossy storage and for efficient rendering by computer
graphics. The deviation measure used for simplification is of
special importance for the application [3]. Many simulation
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and planning problems for electromagnetic wave propagation are
based on the ray tracing model like signal strength prediction [4],
[5] and antenna placement [6]. In these models, the main paths
of wave propagation are evaluated by rays (geometric optics),
and special wave effects are added at the intersection points of
the rays with the terrain surface. Of course, the line-of-sights
from the antennas account for the main propagation paths. So
efficient line-of-sight (LOS) computation is an important means
for terrain interrogation.

In this paper, we present efficient data structures for DEMs
and their use for line-of-sight computation. We describe a 2.5d
extension of the kd-tree, which has been invented for organizing
point sets in arbitrary dimensions for nearest neighbor searching
[7]. Section III describes the construction of the kd-tree in
detail and how to traverse it for line-of-sight queries. The 2.5d
extension allows to skip low height regions during line-of-sight
computation for better data-dependent performance. Although
the data structure requires storage space which is linear in the
number of elevation values given in the original DEM, it has
a number of inner nodes building the binary tree structure.
Therefore, we devise a scheme storing the same information
as the 2.5d kd-tree and merging two levels of the binary tree
into a 4-ary recursive structure. The storage space is nearly the
same as the original DEM and it is stored in a 2d array (Section
IV). In Section V we describe optimizations and extensions of
the kd-tree traversal for line-of-sight queries and for computing
the minimum height having a line-of-sight. Section VI gives
a detailed empirical comparison for different data set sizes and
different numbers of ground stations. Finally, Section VII
summarizes the results and concludes on the importance of the
technique for line-of-sight computation.



II. PREVIOUS WORK

The most straightforward approach traverses the projection
of the ray on the domain plane and checks the ray heights
against the heightfield heights at a number of points per cell
[8]. Different terrain reconstruction is possible for non-integer
grid positions: No interpolation (point reconstruction), double
linear interpolation and bilinear interpolation. For an exact
line-of-sight test, a specific intersection test is necessary for
the reconstruction used. By checking a number p of discrete
points per grid cell, large low-height regions cannot be exploited.
The approach requires in the worst case [ - p height evaluations
regardless of the terrain traversed, where [ is the ray length in
cells.

Lately, also graphics processing units (GPU) have been used
to determine line-of-sight on a terrain, see [9], [10]. These
approaches render both the terrain surface and the ray line and
test if all line fragments are above the terrain surface. If this
is the case, it is a line-of-sight up to the image resolution
used for rendering and for terrain reconstruction. A special
hardware occlusion test is used for counting the number of
visible fragments.

There is also work on slightly extended visibility problems
like computing the horizon for each grid point and direction
sector [11], [12]. Originally, the resulting horizon map
was invented for self-shadowing of the terrain surface. In
[13] the horizon map computation is optimized for a large
number of points. Stewart presents an algorithm with runtime
O(sk(log? k 4 s)) for s horizon sectors per point and k points.

III. KD-TREE RAY CASTING

A ray is defined by an origin point ¢ and a direction vector
d, which implicitly gives a search order on the data domain
traversed by the ray. So if the data domain is partitioned into
several parts then these parts can be searched according to the
ray. Line-of-sight computation is a problem that can be solved in
this way. Additionally, the parameter interval of the ray inside a
domain part is available during traversal.

The simplest partition tree for a 2-dimensional domain
is a binary tree with domain-orthogonal partitioning planes.
The parameter interval [0, co] is subdivided by the ray-plane
intersection point at parameter

split =it (§—6)/ii-d,
with  p'an arbitrary plane point,
71 the plane normal,

into the near interval [0, split| and the far interval [split, o).

For axis-orthogonal partitioning planes (see Figure 1) the
ray-plane intersection computation split = (p, — 0,)/d, resp.
split = (p, — 0,)/d, is simple and therefore especially fast to
compute. The resulting partitioning tree with alternating x-
and y-orthogonal planes is called kd-free of dimension 2. The
traversal of the kd-tree can be adapted for ray segments restricted
to a parameter interval [tyear, trar]. The traversal visits the near
node iff [0, split] N [tnears tar] = [tnear, SpLit] is not empty and it
visits the far node iff [split, 00] N [tnear, trar] = [sPLit, try] is not
empty. In this way the interesting parameter interval of the
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Fig. 1. A PARTITIONING PLANE SUBDIVIDES THE RAY INTO A NEAR
SEGMENT AND A FAR SEGMENT AT THE RAY-PLANE INTERSECTION POINT.

e

Fig. 2. RAY PARTITIONING BY A 2-DIMENSIONAL KD-TREE. THE RAY
SEGMENTS RESULTING FROM PLANE INTERSECTIONS ARE SHOWN IN
DIFFERENT COLORS.

ray is always available for the current node. The special cases,
where the ray is parallel to the partitioning plane (split = co) or
pointing away from the partitioning plane (split < 0), are easy to
handle.

We described so far the traversal of a 2-dimensional domain
(the heightfield plane) by a kd-tree of dimension 2. For a 2.5-
dimensional heightfield, which is a real height function on the 2-
dimensional domain, the approach can be extended. If for each
kd-tree node the maximum height is available then it can be used
to prune subtrees of the kd-tree from traversal. For a ray with
parameter interval [tnear, tor] and height zpear = 0, + tneard at
entry and height zg, = 0, + tg,d, at exit, it can intersect a node
with maximum height hnyax only if Zpear < Amax O Zgar < Pmax-
This simple extension requires only one additional real value per
inner node of the kd-tree.

As the domain part represented by a kd-tree node shrinks
with each subdivision, the leaf nodes represent single entries of
the heightfield grid. From these discrete measurements, terrain
surfaces can be reconstructed of various orders of continuity
and of polynomial type. The question which one represents the
terrain best for a special application has received considerable
interest [14], [8].

We have concentrated on point reconstruction which rep-
resents the surface as a constant within its grid cell and on
bilinear reconstruction which is a degree-two surface with linear
x-parallel and y-parallel intersections. Figure 4 shows plots of
both reconstructions for samplings of the function f(z,y) =
—8x3 — 1222 + 3xy? + y3 + 3y>. Both reconstructions can be
efficiently incorporated into the kd-tree. The key to efficiency
here is that the grid neighborhood required for the reconstruction
is exactly available in a small subtree of the kd-tree. For point
reconstruction, the neighborhood is small, 1-1. For bilinear



Yl

P12

p1

Fig. 3. RAY-INTERSECTION WITH A BILINEAR SURFACE TILE. NOTE, THE
SURFACE IS A HYPERBOLIC PARABOLOID AND HAS LINEAR INTERSECTIONS
ONLY WITH X-PARALLEL AND Y-PARALLEL PLANES SHOWN AS
WIREFRAME.

reconstruction, it is larger, 2 - 2. This has some consequences
for the tree construction described below.

For the intersection computation between the linear ray and
the bilinear surface see Figure 3. Firstly, the intersection points
P1, P12 and po with the domain rectangle are calculated. The
surface heights are added there by bilinear interpolation. From
these three values the parabola in the ray plane is uniquely
determined. By equating the ray segment and the parabola we
can solve the intersection problem. For intersection testing, it
is computationally faster and more robust not to compute all
possible (two) solutions but to compute the parameter value of
the parabola apex and test the ray height against the apex height
just there.

In principle, there are two approaches for tree construction,
recursive top-down construction and iterative bottom-up con-
struction [7]. Due to its simplicity, we use a recursive top-
down construction, which chooses a split index along a split
axis which alternates between x- and y-axis. For a perfectly
balanced tree, the split index is chosen as the center. A data-
dependent tree construction could take the height values in the
current kd-tree node into account. One could choose the split
index which creates two boxes of minimum sum of volumes or
surface area. Due to the restriction of splitting planes to axis-
aligned orientations, the separation of small and large heights
is not so good, and the data-dependent construction is usually

Fig. 4. SURFACE RECONSTRUCTION FROM GRID SAMPLES, HERE FOR THE
FUNCTION f(z,y) = —8x3 — 1222 + 3zy? +y3 + 3y%. POINT
RECONSTRUCTION FROM MAXIMUM VALUES AND BILINEAR
RECONSTRUCTION FROM FOUR CORNER VALUES.

not worth it. For bilinear reconstruction, we process each value
together with its left and lower neighbor (2 - 2 neighborhood).
This can be achieved simply by creating a one row and one
column overlap when splitting the current node (overlapped
splitting). Compared to the disjoint splitting, it generates four
times as many inner nodes because of the overlap.

With disjoint splitting the height of the kd-tree for a
heightfield of size n-m is log, (n-m), and the number of nodes is
2(n-m). With overlapped splitting the height is log,(n - m) + 2
and 5(n - m) nodes. Notice that the n - m leaf nodes are reused
in 3(n - m) places for the overlap. The data per node consist
of two pointers (4 bytes each on a 32-bit architecture), the real
maximum height (8 bytes in double precision), and the real
split value (8 bytes in double precision). So that the memory
requirements sum up to 20 bytes per node (except for data
alignment). For comparison, the given heightfield array consists
of n - m height values with 8 bytes per entry.

IV. RAY CASTING WITH COMPRESSED GRID

The wavelet-like, compressed grid for a heightfield of size
n X m has the same memory requirements as the square grid
of side length max(7,7m) resp. 2 - max(n,m) with overlapped
splitting where = denotes the smallest power of two greater than
or equal to x.

The inefficiency for non-power-of-two and non-square for-
mats can be eliminated, for example, by tiling techniques (as
done in JPEG2000 [15]) or by a boolean sequence, which gives
the orientation of the split, i.e., x- or y-orthogonal. In this way
the wavelet-like compressed grid is a different storage scheme
for the kd-tree of Section III. But if sufficient memory is
available, the square, power-of-two format with its implicit, 4-
ary splitting is beneficial for runtime efficiency.
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Let (cg®*",...,c%3") be a row or column of the 2-

dimensional signal [16]. Then the heightfield decomposition

¢ ' = max(cy,, C;kﬂ) and ' = ¢y —

J
Cok+1

provides the maximum coefficients (67 Lk=0,...,n / 2-1)

and the corresponding detail coefficients (dj Vk= O ,n/2—
1). The composition step is calculated by
At =¢l +min(0, d) and cgﬁrl ] —max(0, d).

Figure 5 illustrates the results of the filter application to a
quadratic heightfield of size 220 - 220. In the non-standard
decomposition used, the filter application alternates between
columns and rows.

The analysis filter can be described in a short manner using
operations in the max-plus algebra ,.x [17]. In this way the
filter process is very similar to one of Haar wavelets. The algebra

max 18 only an idempotent semiring, and the detail filter is not
linear in this algebra.

V. OPTIMIZATIONS AND EXTENSIONS

For efficiency, we have employed some optimizations. On
the one hand, we use standard techniques like a non-recursive
traversal implementation with a stack, a reduction of memory
footprint as much as possible and the avoidance of virtual
methods in classes accessed at a high rate like KDTreeNode.

Further conceptual optimizations are also possible. A ray
usually has more than one intersection with the heightfield. In
the worst case, the query time is O(l + loga(n - m)) which is
mainly determined by the traversal length [ of the ray up to the
first intersection. So it is reasonable to traverse from origin to
destination forward if an intersection is nearby the origin, and
backward if one is nearby the destination. This can be exploited
if there are hints available, for example, from results of queries
with an origin point or a destination point in the neighborhood
(spatial coherency).

The kd-tree traversal can also be extended for computing the
minimum height with a line-of-sight. By only changing the leaf
node code. Instead of testing ray heights against heightfield
heights, now the minimum height required for a line-of-sight
is stored in the ray destination point. This can be updated

.-

Fig. 5. TWO-DIMENSIONAL HEIGHTFIELD WITH NON-STANDARD
DECOMPOSITION. GREEN PIXELS MARK POSITIVE COEFFICIENTS d{g, AND
RED PIXELS MARK NEGATIVE COEFFICIENTS di-

with each leaf node traversed. Minimum height computation is
also possible without a special kd-tree traversal by employing
binary search. Starting with a height interval [dpniy, dimax] With
dmin having no LOS and dp,,x having a LOS, always the interval
center is tested for a line-of-sight. Then, the interval is updated
accordingly, i.e., the lower interval bound is set to the center if
there is no LOS and otherwise the upper interval bound is set to
the center.

The approach can be used for composed domains which occur
often in practice. Then the domain is tiled into rectangular
grids of different resolutions. Besides handling the local tile
coordinate systems in a global coordinate system, all to be done
is to segment the ray at the tile borders and perform queries with
the local rays until the first intersection is found.

VI. EMPIRICAL COMPARISON

We have implemented the kd-tree data structure with line-of-
sight computation and its compressed variant. In this section we
give a systematic, empirical comparison of its performance in
terms of data set sizes, search direction and sorting of ground
stations by ground station height and by distance to the query
origin. For this, we compute the minimum height with line-of-
sight to one of a fixed number of ground stations for each point
of the heightfield grid. Figure 6 shows the results with different



Fig. 6. HEIGHTFIELD WITH LINE-OF-SIGHT INFORMATION TO TWO GROUND STATIONS. FROM LEFT TO RIGHT: POINT-RECONSTRUCTED TERRAIN,
BILINEAR-RECONSTRUCTED TERRAIN, MINIMUM HEIGHT WITH LINE-OF-SIGHT. COLOR MAP SHOWS THE HEIGHT ABOVE GROUND WITH FULL RED AT
243.9M TO FULL GREEN JUST ABOVE GROUND, AND BLACK AREAS HAVE A LINE-OF-SIGHT AT THE GROUND HEIGHT.

TABLE L. TABLE IL
TIMES FOR BUILDING THE DATA STRUCTURE IN DIFFERENT RESOLUTIONS. TIMINGS OF LINE-OF-SIGHT COMPUTATION ON THE SAME HEIGHTFIELD IN

‘ 220220 ‘ 256%256 ‘ 512%512 ‘ 1024*1024‘ 20482048 DIFFERENT RESOLUTIONS (QUERIES TO TWO GROUND STATIONS PER

kd-ree, | 35.02ms | 49.53ms | 204.21ms | 360.85ms | 1441.14ms HEIGHTFIELD CELL).

point .

\d-tree, | 60.86ms | 9957ms | 322.70ms | 1218.63ms| 5058.16ms | 2201220 | 256*256 | 512¥512 | 1024*1024 | 2048+2048

bilinear kd-tree, 0.00321ms | 0.00324ms | 0.00391ms | 0.00381ms | 0.00408ms
point (311463q/s)| (308214q/s)| (255696q/s)| (262440q/s)| (245386q/s)

;V;fftlet’ 7.34ms | 7.47ms 131.20ms 1 533.43ms | 2331.25ms  — 4 00548ms | 0.00539ms | 0.00583ms | 0.00642ms | 0.00744ms

wavelet, [ 9T.1Tms | 101.50ms | 497.18ms | 1962.52ms| 840220ms  Dilinear- | (182468q/s)| (185671q/s)| (171488/s)| (155867q/s)| (134424g/s)

bilinear approx

kd-tree, 0.00600ms | 0.00557ms | 0.00558ms | 0.00697ms | 0.00759ms
bilinear (178676q/s)| (179615q/s)| (179332q/s)| (143456q/s)| (131769q/s)

. . . . . wavelet, 0.00335ms | 0.00345ms | 0.00391ms | 0.00446ms | 0.00421ms
reconstructions of the terrain surface. Point reconstruction is point (298808q/s)| (289764q/s)| (255636q/s)| (224383q/s)| (237468q/s)

the simplest and fastest method and also gives usually more ~ wavelet, | 0.00553ms | 0.00568ms | 0.00597ms | 0.00698ms | 0.008090ms

conservative visibility results. Bilinear reconstruction uses a E;lgrlgir (180600q/s)| (175947g/s)| (167430q/s)| (143273g/s)| (1235444/s)

degree-two surface and has the property of being continuous, avelet, | 0.00546ms | 0.00581ms | 0.00605ms | 0.00713ms | 0.00845ms
which is important for many simulation applications. With  bilinear | (183242q/s)| (172219q/s)| (165277q/s)| (140322q/s)| (118410q/s)

bilinear-approximate we denote the reconstruction which has
the same border lines as the bilinear surface but connects also TABLE 111
two arbitrary border points by a line. The resulting bundle of
planes (containing the border point, the vertex point and one of
the lines) is not a single surface as it does not have a unique
tangential plane anymore.

TIMINGS OF DIFFERENT SEARCH DIRECTIONS: FORWARD, BACKWARD OR
BASED ON WHICH ONE WAS FASTER IN LAST QUERY (HEIGHTFIELD OF
RESOLUTION 220%220 WITH TWO GROUND STATIONS).

Table II lists the computation times for different resolutions | forward | backward | last-fastest
of the same heightfield data set. All timings were performed on ~ kd-tree. 0.00325ms |0.00316ms |-0.00315ms
X . . point (308084q/s)| (316837q/s)| (317766q/s)

a Windows XP System with Intel Pentium M 1.6GHz processor kd-tree, 0.00612ms | 0.00556ms | 0.00563ms

and 1.5GB RAM.! Point reconstruction is fastest as it needs bilinear (163273q/s)| (179889q/s)| (177758q/s)
to access only a single height value at the leaf level. For — wavelet, 02.0035st 0.00344ms 02.003ilms
bilinear-approximate anq bilinear reconstruction, we try to 1.<eep E}‘;ﬁlet’ E). géggzg::) 8233223121/:) 8.8356 4221/?
the four leaf nodes required for the reconstruction sequentially  pijinear (151095q/s)| (177482q/s)| (183242q/s)
in memory. The resulting performance is roughly 3/4 of that

of point reconstruction. Especially notable is that the wavelet-

like storage scheme is nearly as fast as the fully-stored kd-tree  carrying out the search.

with inner nodes. For the more complex leaf code of bilinear
reconstruction the difference is even smaller.

The tests concerning search direction in Table III show that
the information where the intersection point lied in the last query
at a different height or in a horizontal or vertical neighbor is most
successful. Also this information is very easy to exploit. Note
that it is not easy to predict if forward search or backward search
has a shorter search length up to an intersection as it requires

For querying a large number of ground stations, the question
is what order of ground stations is fastest for finding a LOS to
one of them. Table IV compares three different orders: random,
sorted by decreasing height or sorted by increasing distance
to the query origin. This experiment confirms the theoretical
results. Sorting by increasing distance has the best worst-case
runtime, and it is best if it is not dominated by the costs of
sorting, which has to be done with each new query point. But

1 See the chart Low End CPU’s for an assessment of this processor’s speed here alS(.) coherency Can. help with regqlar SCFS of query points.
http://www.cpubenchmark.net/low_end_cpus.html The sorting by descreasing ground station height does not have



TABLE IV.

EFFECT OF DIFFERENT SORTING OF GROUND STATIONS: RANDOM, SORTED
BY DECREASING HEIGHT OR SORTED BY INCREASING DISTANCE TO THE
QUERY DESTINATION (HEIGHTFIELD OF RESOLUTION 220%220 WITH 100

GROUND STATIONS).

| random | sorted by height | sorted by distance
kd-tree, 38.466s 48.676s 26.444s
point (8,953,563q) (12,011,323q) (6,005,989q)
kd-tree, 25.107s 29.942s 19.191s
bilinear (4,468,750q) (5,281,339q) (3,382,248q)
wavelet, 41.319s 52.053s 28.216s
point
wavelet, 27.061s 31.821s 20.000s
bilinear

this cost per query point but its results heavily depend on the
data set heights. In our experiments, it could not outperform
the random order of ground stations. Notice that the point
reconstruction performs 2-2.3 times more queries compared to
the bilinear reconstruction to check that there is no LOS to any
ground station at the current height.

VII. CONCLUSIONS

We proposed a 2.5d extension of the kd-tree data structure
for line-of-sight computation on terrains. This data structure
is classic for nearest neighbor searching in large point sets and
for speeding up ray intersection with 3d triangle soups. With
our extension, it shows good performance also for line-of-sight
queries on terrain surfaces, where large low height regions can
be processed with much fewer ray-terrain height tests. We did an
empirical comparison with data sets of different resolutions and
different numbers of ground stations. To save for the additional
storage of the inner nodes of the binary tree, we used a wavelet-
like compressed storage scheme which merges two levels of
the kd-tree (into a 4-ary tree) and allows for reconstruction
on-the-fly during a line-of-sight query. Despite the additional
reconstruction operations, the overall runtime is nearly as good
as the runtime for the fully-stored kd-tree with inner and leaf
nodes. As future work, we think about lossy compression and
decompression of the heightfield array and an analysis of the
resulting errors in line-of-sight computations.
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