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AbStraCt Colliding face pairs
In this paper we reconsider pairwise collision detection

for rigid motions using a-DOP bounding volume hi- <
erarchy. This data structure is particularly attractive bes| ;-.-oooooooooes T
. .. s . . g| i Coliision Detection Pipeline
cause it is equally efficient for rigid motions as for arbi-g)
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We propose a new efficient realignment algorithm, - |obiect Defitons oo e :
which produces tighter results compared to all known al- =g rwediace secana - aueep st Prne Mo 0N ane Conguer o
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gorithms. It can be implemented easily in software and : |coision interest on f,, face pairs
in hardware. Using this approach we try to show, that | [5ay>mece emrrensers :
k-DOP bounding volumes can keep up with the theoret- & o

ically more efficient oriented bounding boxes (OBBSs) in
parallel-close-proximity situations. Figure 1: Collision detection can be considered as a

pipeline of successive filters. The frontend handles
Key Word_s: virtual reality, collision detection, distance complete objects (of a scenegraph system), intermediate
computation stages use some simpler entities like bounding volumes
and the backend handles face pairs.

1 Introduction

Collision detection is an important component in any VR
application with user interaction like virtual prototyping bitrary convex polytopes have very good enclosing prop-
and virtual simulation systems. In general the collisiorérties, moderately complex collision tests and complex
detection component can be structured into a pipelingonstructions of the bounding volume and the bounding
much like the rendering pipeling [18]. volume hierarchy. Spheres, axis aligned bounding boxes
In Figure[1 the collision detection pipeline is shownand its generalization k-DOPs have very simple collision
with its pipeline stages. The frontend consists of the odests and constructions of the bounding volume and the
ject handler, which allows to define and identify the obbounding volume hierarchy, but have only moderately
jects and to state the application’s collision interest. The@iood enclosing properties. Because of the simple con-
comes a first neighbor-finding stage, which reduces trdructions of the bounding volume itself and the bounding
set of all objects to smaller neighbor sets of the interes¥olume hierarchy they are particularly suited for arbitrary
ing objects. Within each neighbor set a pairwise collisiof0int motions (deformations) like in cloth animation [12].
detection is performed. For this pairwise collision de- [n this paper we are concerned with pairwise collision
tection problem several algorithms have been proposedgtection for the special case of euclidean motions using
The first class uses a hierarchy of simpler bounding vok-DOP bounding volumes. Aliscrete orientation poly-
umes on the face set to stop the search for colliding facé@Pe ¢-DOP)is defined by dixedsmall set ofk direc-
in sublinear time. Here the performance depends on th@ns (D1, ..., Dy) and a tuple(ds, ..., dy) € R of
tightness of the bounding volume and on the complexit§calars by
of the collision test for the bounding volume. A wealth of
different bounding volumes have been proposed: spheres
[6], oriented-bounding-boxe$ [11], axis aligned bound-
ing boxes [[16], k-DOPs (generalization of axis aligned
bounding boxes)L[7], swept sphere volumes [9], up tevith halfspaces
arbitrary convex polytopes [3]. Roughly speaking, the
bounding volumes like oriented bounding boxes and ar- Hy:={peR®|D; p<d;}

{(p|Di-p<di,i=1,....k}y=(H (1)



Usually the set of directions is restricted, so that for eacbn the convex hull, stored with each inner node of the
directionD; there is an antiparallel onB; , o = —D; bounding volume hierarchy of obje@. During traver-
sal the convex hull is lazily transformed by matuix,
to find new boundsl; , , andd; for the k-DOP. This

k/2 Y o
. method is quite expensive in time and space and as stated
pIDi-p<dii=1...k = O Sio @, [7] it is only justified for the root node. The approx-
= imation method does not try to compute:&DOP from
both together defining so-callesthbs scratch. Instead, it transforms the vertices of the origi-
5 nal k-DOP by matrix)/ and computes &-DOP for the
Si = {peR’| —diyr/2 < —Diyis2-p transformed vertex set (see Fig[ife 2). For non-degenerate
Di-p < di} situations this requireQ (k) vertex transformations and
= {peR®| —ditn2 < D; p<di} £Q(k) scalar product computations.

- o o All other work tries to make the approximation method

to k/2 interval overlap-tests. In order to use this simplghe major axis directions{D, = (1,0,0),D; =
collision test also with euclidean motions, at least one ofy 1, 0), D, = (0,0, 1)} are considered for the realign-
the tested:-DOPs is defined by rotated directiof®;)  ment problem (see Figufé 3). The resulting approxima-

and has to be realigned to the original directid®%).  tion algorithm requires only scalar product evaluations.
This paper proposes a new algorithm for realigniig

DOPs which is more efficient than all known algorithms,
and also produces tighter results. The calculation of the B
bounding volume and the bounding volume hierarchy is
only slightly more complex.

In the next section we briefly summarize previous work
on the realignment problem fdt-DOP bounding vol-
umes. In Sectiofi]3 we first present our realignment ap-
proach for bounded rotations. Afterwards we describe
how to extend it to the full range of rotations by apply-
ing a remapping of directions. With this the fullDOP
intersection test can be presented. Se¢tjon 5 then extends D,
to proximity computations: Minimum Distance and Ap-
proximate Minimum Distance. In Sectiph 6 we show theFigure 2: Approximation method using all k-DOP direc-
performance statistics for the whole spectrum of collisiomions.
scenarios and compare with the other realignment algo-
rithms and with the performance of RAPID [10], using
OBBs as bounding volumes. Finally, we conclude and
identify directions for future work.

2 Previous work

In a scenegraph system two objedtand B are usually
defined by their geometry in a local coordinate system,
which is given by a transformation matri 4 and M,
respectively. In case of the-DOP bounding volumes
given in the local coordinate systems, we can do the col-
lision tests ind’s (or B’s) coordinate system.
Therealignment problenthen is to calculate &-DOP
bounding volume fo - B, whereM = Mgl-MB is the
matrix for the change of coordinate system from object Figure 3: Approximation method using only the major
to objectA. axis directions.
Three approaches for the realignment problem can be
found in the literature. In the original paper Klosowski The approximation method in its original form requires
et al [7] propose two methodsill-climbing methodand to compute the boundary representation (BRep) okthe
approximation methadThe hill-climbing method relies DOP. Possible algorithms for the special case®sDOPs
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can be found inJ1] and for the general caselin [14, Corbit j recording if there is a point in the voidage region
vex polyhedrons as halfspace intersections]. Zachmari®;. During the realignment algorithm this information is
[17] proposes a different implementation of the approxused to scale the valug according to the transformed
imation method (figurg]2), which does only require thalirectionsD,. For arbitrary rotations we need an addi-
BRep for the unit DOP (alil; = 1). The algorithm com- tional remappingr of directionsD;, which is described
putes the new bound by a scalar product with a vector in Sectior 3.2.

1
D; 3.1 Realignment for Bounded Rotations
D. -1 d. In order to keep the information about the point locations
Ji,1 Ji,1 . . . .
d = D/-| D, dj, , in the neighborhood of directio®; small, we have to
D d: keep the angle between directiobs and D; smalll.
Ji,3 djlz,s (3)
_ D// dh 1 ~ d
- i’ Ji,2
dji,,a

wherej; ,, 1 < h < 3 are the indices ok-DOP halfs-
pacest;, , , supporting an extremal vertex of the orig-
inal k-DOP. The correspondengg;, 1 < h < 3 and
thereforeD! is the same for all DOPs in the tree and can
be computed once at the beginning of the tree traversal
from the unit DOP. Altogether this algorithm requires
matrix inversions and matrix-vector products once and c -0
k scalar product computations per realignment.

3 Realignment as Table Lookup

This work proposes a new realignment method, falling in G d
between the approximation method and the hill-climbing

method. First, a point used as the rotation center is

stored with each node of the bounding volume hierarchy.

Its coordinates are set as the center-of-mass of the con-

tained points. 7

Cc
Figure 5: Voidage regions G; in halfspace H;

SupposeD; - D} < a with 0 <« a < 1. Then we
subdivide the angle cone with apertureto n — 1 rings

R _ sl—a
aj = 1=73=%

Cc

Rj ::{D€$2| aj_1>D~D,;2aj}
Figure 4: Angle cone, subdivided into n— 1 rings R; plus
the remaining directions It,, (shown in two dimensions)  with j = 1,...,n — 1 and the remaining directions

Then thek-DOP bounding volume is calculated as R, ={De%3| a>D-D;}
usual. In a second pass for edelDOP directionD; in-
formation is added about the point locations in a conicas shown in Figurg]4.
region aroundD; (see Sectiop 3]1). The conical regionis In the second phase of theDOP bounding volume
subdivided into a number of ring®;, each with a single construction we store the information, if there is a point



p in the voidage regiols; with

Gi=A{pl llp—cl>di pp=5 € Bj}

v Hp cf

A ao/a‘=j/a/ —d

For efficiency we choose = 32 and encode it as bit
inanunsigned data member. Figufg 5 shows the geo-
metric meaning of thi®ccupancy tablewhich contains
the occupancy status of all regio@s.

For the point® in the remaining regiok-,, we calcu-
late the projected length of (p — ¢) onto the shell of the
outermost ringR,,. With these projected lengths we set

G,

(4)

r; := min
peG,

i)

[

Figure 7: Geometric consideration for points lying in in-

as the minimum ratio between the scafaand the pro-
jected lengths (Figuig 6).

Using the occupancy table the realignment problem
can be solved as follows. Let directid® be in R, for
indexm € {1,...,n —1}.

ner regions G}, relative to direction D} (shown in two
dimensions)

first bit m — h found to be set. In the teran

the denominator gives the length of the shell of ring
R,,_n, and therefore is a lower bound on the projec-
tion of a direction in ringR,,,_,. The numerator is
just an upper bound on the cosine between the direc-
tion of the point andD;, (see FigurE]?).

Cc

Figure 6: Geometric consideration for points lying in the
remaining region G,, (shown in two dimensions)

a,/a,=1 /74/
— T4,

1. First consider the remaining regi6f), and set

Figure 8: Geometric consideration for points, lying in

fii= A(n—2)—-m (5) outer regions G, 1y, relative to direction D (shown in
T two dimensions)
if bit n is set. Otherwise we initializg; := a. The ) ,
resulting halfspacél! = {p | D!p < f,d;} contains 3. Consider all outer regionS,, 1, h = 1,...,(n —
the points, lying in the regio,,. Figure[§ shows 2) —m and evaluate
why this statement holds. an_1
fom e £, ) @
2. Consider all inner regiors,,,_», h =0, ...,mand Am+h
evaluate This sequence— is monotonously increasing
fi := max (fl, Gh-1 ) (6) and again the maX|mum search can be stopped for
Am—h

Because the sequen%@i is monotonously de-
creasing the maximum search can be stopped for the

the first bitm + h found to be set, if searching in-
versely. The explanation for the terﬁt\Ll is simi-
lar to the previous one (see Figlife 8)



We then use the factgf; calculated to scale the value However, note that the remappiagis not a permuta-
d; tion in general. Besides finding the remapping, the index
d; .= fid; (8) m of the region (relative to directioh, ;) can be calcu-
. o lated easily.
3.2 Remapping of Directions
In the previous section we have assumed that directiah Intersection Test

D; satisfiesD; - Di < a. Now we show how to ensure For the full k-DOP intersection test we have to add all
that for arbitrarily rotated directions;. components together. If the-DOP of objectB is re-
First note, that for &-DOP the aperture has to be aligned, we need the occupancy tabt®2. occ and the
chosen large enough to cover the direction$gfcom- valuesdop2. r; to calculate the scaling factors. Ad-
pletely (see Figurg]9). ditionally the rotation centedop2. c is required to cal-
culate the movementorrect due to the rotated cen-
’ ter. This is given by the matrix-vector produét; -
SRS (M dop2.c), projected onto directiom;. In the actual
‘ implementation it is done in one scalar product using a
J s —% \ table of the scalar product®, - M.1, D;- M.o, D;- M.3)
s(13)=1/ B4 with the columns of the matrix/.

o(3)=6

for (i=0; i<k; ++i) {
unsigned mini = sigma(i+k);
unsigned maxi = sigmagi);
real correct = dop2. c1(D; - M.1)
+d0p2. CQ(DZ' . MQ)
+d0p2. Cg(Dz . M;),
; , real min2 = (dop2.  dmini-dOP2. Cmini) - fmini
o(4)=5 + correct;
real max2 = (dop2. dmazi-dOP2. Cmazi) *fmazi
+ correct;
if (max(dopl. d;1x,min2)>min(dopl. d;,max2))
return false;

Figure 9: Remapping of directions (here with the 14- }
DOP). Note, that the conical regions I%; (with aperture  return true;
a) cover the sphere 32 completely!
Altogether the intersection test requirksnultiplica-
The valuea depends ort and the regularity of direc- tions in Equatio Bk multiplications/divisions in Equa-
tions D;. In Table[]1 the values of are given forl4- tion[§ andk scalar products (for the rotation of the center
DOP,18-DOP,26-DOP and for the platonic solidsDOP ~ point). The quotients in Equatiop$ 6 gnid 7 can be evalu-

(Cube),12-DOP (Dodecahedron). For performance readted by a two dimensional table lookup. With multi-
sons larger values af are preferable. plications the method is nearly as efficient as the approx-

imation method restricted to the major axis directions.

a
6-DOP 0.57735(54.7 deg) 5 Extension to Proximity Computation

12-DOP | 0.787539(38.04 deg) In this section we show how to use the realignment algo-
14-DOP | 0.806898(36.2 deg) rithm for proximity computation problems.

18-DOP | 0.816497(35.26 deg) o . _ S _
26-DOP | 0.886452(27.57 deg) Minimum Distance Find a face pair with minimum dis-

tance.

Table 1: Aperture a of direction cone for various k-DOP
bounding volumes. Approximate Minimum Distance Given an absolute

error or relative error, find all face pairs with dis-

Atthe beginning of the bounding-volume-tree traversal  tance values lying within the error bounds above the
we once calculata remappingr of directions minimum distance.

o (i) := h, so that 9 Computation of the approximate minimum distance can
D! lies in regionR,,, relative to directionD,, © be done by solving a weaker problem first:



Weak Approximate Minimum Distance Given an ab- Traits class in the template parameters it can be con-
solute error or relative error, compute a sequence dfgured to use any intersection test or proximity compu-
face pairsfa, fB.i)i=1,...n, SuUch that tation with one of the realignment algorithms presented.

In order to show the efficiency of the new realign-

%Ililli_l{dist(fA,jv fB.j)} ment method, we have run a series of benchmarks on a

Windows-PC with 1GHz processor clock-rate. Bench-
is within the error bounds for alli and mMarking collision detection algorithms realistically is a
min;_y.{dist(fa,, f5,)} is the minimum difficulttask. Thisis so, because there is a wealth of mod-
distance. els with different characteristics and motions relative to
each other [15]. In[17] a benchmarking scheme for two

In a second pass over the resulting sequence of the Weallodels each contained in a unit-box is proposed, where

Approximate Minimum Distance problem we can therthe second object performs full-z rotations at decreasing

solve the Approximate Minimum Distance problem.  distances relative to the first one.

The algorithm for the Weak Approximate Minimum  Figure[I0 shows the intersection test times for the ap-
Distance problem using-DOP bounding volumes is of proximation method restricted to the major-axis direc-
branch-and-bound type |[8]. The pruning with lowertions, the approximation method using all directions and
bounds on the minimum distance of the faces, containgble new realignment algorithm. For the benchmarks the
in two k-DOPsdop1 anddop2, is done as follows k-DOP intersection test is used also in the mixed situ-

ations InnerNode—LeafNode and LeafNode—InnerNode,

for (i=0; i<k; ++i) { instead of the primitive test using the face in the leaf
unsigned mini = sigma(i+k); node. In practical applications it is reasonable to use
unsigned maxi = sigma(i); only the primitive tests in mixed situations and safe for
real correct = dop2. c1(Di - M) the k-DOP bounding volumes in leaf nodes. This safes
*dop2. cy(D; - M) one half of the total memory consumption. In each test

dist(fa, fpi) <

+d0p2. Cg(D,’, . Mg),

real min2 = (dop2. Amini—dOP2. Cmini) * fmini

+ correct;

real maX2 = (d0p2 dnLaxi_dopz- Cma:ci) 'fmaxi
+ correct;

real diffl = dopl. d;—min2;

real diff2 = dopl. di+r—Maxz;

if (diff1>=0 && diff2>=0)

if (diff2>getDistance()+getAbsError())
return false;

} else if (diffli<0 && diff2<0) {
if (-diff1>getDistance()+getAbsError())
return false;

}
}

return true;

6 Results

We have implemented a system based:edDOP bound-

the realignment algorithm is performed on the fly and the
realignment result is never cached, which would reduce
the number of realignments to one half. Concerning the
construction of the hierarchy we always used a binary hi-
erarchy with subdivision of the longestDOP direction

at the midpoint mediari_[10], because it is well known
and the node depths are balanced. Of course, there are
other possibilities [17]. For the triangle-triangle intersec-
tion test we use the approach proposed byllet [13]

with some simple modifications (i.e. without divisions).

The new realignment algorithm performs good on av-
erage, but is sometimes outpaced by the approximation
algorithm using alk-DOP directions.

Figurg 11 shows the performance in a classic scenario:
parallel-close-proximity. Here we have modified the sce-
nario of a sphere containing another sphere of slightly
smaller radius by randomly perturbing the inner sphere
coordinates. As already stated [n[10] ahd|[15], RAPID

ing volumes for collision detection and proximity com-performs especially good in this scenario. With the new
putations on top of the OpenSG scenegraph. This C+#€alignment algorithm the number of bounding volume

implementation has ®oubleTraverser

template-

and triangle tests reduce with increasingJnfortunately

class, which traverses two bounding volume hierarchid8 the currentimplementation this decrease does not com-
in parallel and does the dispatching of the four possiPensate the cost increase per bounding volume test.
ble cases: InnerNode—InnerNode, InnerNode—LeafNode, Figure[12 shows the performance in another classic

LeafNode—InnerNode and LeafNode-LeafNode.

Thecenario: point-close-proximity. In this scenario with an

different versions of this template-class incorporate difincreasing number of collisions RAPID has a very ho-
ferent caching strategies, like the generalized front caclmogeneous behavior and falls in between all tHeOP

[3] or the simple caching of a single face pair.

By aalgorithms.



7 Conclusion and Future Work

We have presented a system for collision detection and

proximity computations withk-DOP bounding volumes

(on top of the OpenSG scenegraph). Integrated into this
system is a new realignment algorithm for thé>OPs,
which is slightly more complex to implement than the 71 j T, Klosowski, M. Held, J. S. B. Mitchell, H. Sow-
simple approximation algorithm using only the major di-
rections. Because it never requires the boundary repre-
sentation of a k-DOP, it is much easier to implement than
the approximation algorithm using a&ltDOP directions,

presented in [17]. In its current implementation it is only
sometimes more efficient than RAPID.

Our next step will be to do some low-level optimiza-
tions (like optimizing memory layout) guided by profil-
ing. We want to further remove the direction insensitivity [9
of the approach (see Figurg 5). One idea for this might
be to subdivide the rings further into ring sections. Cur-
rently the k-DOP bounding volumes are defined in the

local coordinate system of the models. It might be reg0]

sonable to choose a different coordinate system for better
performance.

An efficiency analysis of this algorithm, as donelin [19][11]

for axis-aligned bounding boxes, also requires some fur-
ther research.
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Figure 10: Intersection test statistics for the models Dinosaur and Horse (around 20000 triangles each) with 14-DOPs.
In the lower row the diagrams give the number of bounding-volume tests (blue)/mixed tests (green)/triangle tests (red).
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Figure 11: Intersection test statistics for the parallel-close-proximity scenario (sphere models with 5140 triangles
each).
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Figure 12: Intersection test statistics for the point-close-proximity scenario (sphere models with 5140 triangles each).
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