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Abstract

This article focuses on algorithms for fast compu-
tation of the Euclidean distance between a query
point and a subdivision surface. The analyzed al-
gorithms include uniform tessellation approaches,
an adaptive evalution technique, and an algorithm
using B́ezier conversions. These methods are com-
bined with a grid hashing structure for space parti-
tioning to speed up their runtime.

The results show that a pretessellated surface is
sufficient for small models. Considering the run-
time, accuracy and memory usage an adaptive on-
the-fly evaluation of the surface turns out to be the
best choise.

1 Introduction

The problem to determine the Euclidean distance
between an arbitrary point in 3D and a free-form
subdivision surface is fundamental in many differ-
ent communities including computer-aided geomet-
ric design, robotics, computer graphics, and compu-
tational geometry.

A lot of algorithms in the context of physical sim-
ulation, path planning, etc. have to determine this
distance: an exemplary algorithm is the shape fit-
ting approach by TORSTENULLRICH. It evaluates
distances between a point cloud and some subdivi-
sion surfaces in order to fit a parametric model [1].
As query time is always an issue, the goal is to
choose the best combination for the application at
hand.

Subdivision surfaces are based on polygonal
meshes, and they can be subdivided into triangle
meshes. So is it suitable to preprocess the object
into a triangle mesh and compute distances to the

object just by searching the closest triangle? Should
the search be performed on the subdivision sur-
face patches? This article discusses accuracy, run-
time and memory usage of various approaches for
searching strategy, surface primitives used, and cal-
culation of the primitive’s minimum distance.

Figure 1: The test objects are chess figures mod-
eled with subdivision surfaces. Each initial mesh
has between 70 (“pawn”) and 1 454 (“rook”) poly-
gons. The Figure shows all test pieces in their initial
chess position.

2 Related Work

Subdivision surfaces are part and parcel of this arti-
cle. They define an object through recursive subdi-
vision starting from an initial control mesh. A vari-
ety of schemes with different subdivision rules ex-
ist for geometric design and graphics applications.
An overview on subdivision surface modeling in
the context of computer-aided design has been pre-
sented, e.g., by WEIYIN MA [2].
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2.1 Subdivision Surfaces

A subdivision surface is defined by an infinite sub-
division process. In contrast to parametric surfaces
which provide a finite evaluation algorithm, a sub-
division surface does not come with a direct eval-
uation method at arbitrary parameter values. Cur-
rently, it can be evaluated via

• Uniform subdivision: If the subdivision rules
are applied sufficiently often, the resulting
mesh will be a tight approximation of the limit
surface [3]. For non-interpolating subdivi-
sion schemes, e.g., Catmull-Clark, the result-
ing mesh points will not lie on the limit surface
in general. In order to decrease the deviation,
limit point rules can calculate the point on the
limit surface for a subdivision mesh point [4].

• Adaptive subdivision: Due to the exponential
need of memory it is a good strategy to sub-
divide the mesh adaptively. This results in a
subdivision process with varying subdivision
depth but constant overall accuracy [5]. The
use of limit point rules is essential for the con-
nection of mesh parts with different subdivi-
sion depths.

• Exact evaluation & conversion: Stationary
subdivision schemes, e.g., Catmull-Clark, al-
low an exact evaluation at arbitrary parameter
values [6]. JOS STAM makes use of the prop-
erty that regular patches (control mesh faces
with all vertices of valence 4) can be evalu-
ated as uniform, bicubic b-spline patches. The
region around irregular points (non-valence
4) shrinks successively when subdividing the
irregular patches, and the eigen-structure of
the subdivision matrix is used to determine
the limit there. Two alternative parameteri-
zations for irregular patches were proposed in
[7], which ensure non-degenerate derivatives
of the parameterization. For Catmull-Clark
subdivision, a regular quad patch can even be
represented as a single bicubic Bézier patch.

2.2 Distance Calculations

Distance fields are a representation, where at each
point within the field, the distance from that point
to the closest point on a fixed object within the do-
main is known. In addition to distance, other prop-
erties (direction to the surface, etc.) may be de-
rived from the distance field. A survey of methods

for the precomputation and representation of dis-
tance fields can be found in “3D Distance Fields:
A Survey of Techniques and Applications” [8]. To
speed up the search in a domain space-partitioning
data structures allow to access object parts by spa-
tial proximity and other properties. Data structures
used for this, like tree structures (e.g., kd-tree), grid
structures (e.g., 3D regular grid) and cell structures
(e.g., Voronoi diagram) are described in “Geometric
Data Structures for Computer Graphics” [9].

For applications where many distance queries are
performed and the object is fixed within the domain,
the distance field can be precomputed and repre-
sented in a scalar data structure for the domain, like
a regular grid or a compressed regular grid. With
this distance field data structure, the distance from
a domain point to the closest object point can be re-
trieved from the data structure. In the case, where
the object is deforming, it is necessary to update this
derived, scalar field. In any case, where object in-
formation is stored about the location within the do-
main, this has to be updated. So for deforming and
changing objects it is beneficial to keep this amount
as small as possible, at best without any domain
data structure. This setting without preprocessing
is calledonline distance evaluation.

For the problem of distance computation to sub-
division surfaces, we propose the following classi-
fication of approaches:

• Approaches based on the distance field:A
separate scalar data structure reconstructs the
(signed) distance to the closest point on the
object [8]. We also consider to this group
GPU approaches like [10], which compute and
evolve the distance field in a small narrow
band around the object.

• Searching of surface primitives of the orig-
inal object representation: The curved sur-
face patches, which correspond to a face of the
control mesh, are organized in a spatial data
structure for the domain based on their bound-
ing volume. Only this data structure has to be
updated after model deformations. The spa-
tial data structure is then traversed in increas-
ing minimum distance to the query point, and
the primitive’s minimum distance is computed
as a subproblem. A termination condition is
necessary to stop the search with the correct
distance value.



• Searching of surface primitives derived
from the original object representation:
Instead of using the surface primitives of
the original object representation immediately,
one derives a small set of simpler primitives
from the original surface primitives. The rea-
son could be that they offer a simpler mini-
mum distance algorithm. In the case of sub-
division surfaces, the surface’s triangulation is
often available also from other tasks.

3 Exposition of Methods

In this work, we chose three kinds of algorithms to
determine the distance between a query point and
a subdivision surface. The first group consists of
three algorithms which use the triangulation of a
subdivision surface. The next approach evaluates
the subdivision surface on-the-fly. And the last al-
gorithm converts it into B́ezier patches. In this case
distance queries are answered by a numerical mini-
mization routine.

3.1 Uniform Triangulation

The most simple approach uses an uniform tessel-
lation of the subdivision surface at a fixed depth
to create a triangle mesh. For a tight approxima-
tion of the limit surface, the limit points of the con-
trol vertices have been used. For each query point
the distance to each triangle is calculated [11], and
the minimum is selected. This approach does naive
search without any spatial data structure.
pros The calculation is robust and its correctness

can be verified easily.
cons As runtime and memory footprint of a sin-

gle distance query are linear in the number
of triangles and exponential in the subdivi-
sion depth, this algorithm is not useful for real
world applications. The implementation has
been used to verify the results of the follow-
ing algorithms, but it is not considered to be a
practical solution.

3.2 Hashed Triangulation

A significant speed-up can be achieved if the trian-
gulation is stored in a space-partitioning data struc-
ture. The hashed triangulation approach is a space-
efficient implementation of a 3D regular grid by us-

ing spatial hashing [12]. In this way, the storage re-
quirements can be restricted arbitrarily, e.g., linear
in the number of model triangles.

For a given query point, the hashed triangula-
tion approach determines which grid cells may po-
tentially contain the nearest triangle. Within the
grid cells in question, the registered triangles are
checked. According to our classification, it is based
on searching of surface primitives derived from the
original object representation.
pros The technique is easy to implement, and a

well chosen grid cell size gives good query
times.

cons The memory footprint is exponential in the
subdivision depth which disqualifies it for
many applications. Another problem is the
algorithm’s dependency on the choice of the
grid cell size. A reasonable size takes into ac-
count the model’s bounding volume as well as
its face distribution within the domain. This
problem is discussed in detail in Section 4.2.

3.3 Hashed Triangulation – First Hit

A further speed-up is possible, if only the distance
value (not the corresponding perpendicular point)
is needed, and if a small error is acceptable. In this
case, only the nearest non-empty cell is checked.
If no other cell is checked, the returned value may
have an error up to the length of the cell’s diagonal.
pros Same as 3.2 Hashed Triangulation.
cons Same as 3.2 Hashed Triangulation. The re-

turned distance value is only a rough approxi-
mation.

3.4 Adaptive Subdivision

The triangulation-based distance calculations de-
scribed before have large memory requirements in
common. If the subdivision control mesh has to re-
main in memory, for any reason, the triangulation-
based methods are not suitable due to their large
memory requirements. An approach which does
the refinement of the subdivision mesh on-the-fly
has always smaller memory requirements. Our im-
plementation of the adaptive subdivision algorithm
uses a hashed 3D regular grid structure to iden-
tify relevant subdivision patches. These patches are
subdivided using slates [13] as needed. Accord-
ing to our classification, it usessearching of surface
primitives of the original object representation.



pros The memory footprint is only linear in the
size of the subdivision mesh due to the 3D
hash table. The additional overhead during a
patch evaluation is of small, fixed size and can
be neglected.
Only a small preprocessing is needed. In con-
trast to triangulation-based approaches, this
allows to modify the maximum subdivision
depth and therefore adapt the accuracy of the
distance calculation as needed.

cons The algorithm requires a substantial imple-
mentation.

3.5 Bézier Representation & Numerical
Optimization

Some subdivision schemes, e.g. Catmull-Clark sub-
division [6], allow direct evaluation at arbitrary pa-
rameter values. This property can be used to formu-
late a distance calculation algorithm. Having identi-
fied relevant subdivision patches, the algorithm con-
verts them into B́ezier patches. For regular patches
this can be done exactly. Irregular patches have
to be approximated. Using a parameterization as a
Bézier patch, the distance calculation can be formu-
lated as a minimization problem in parameter space
[14–16]. For the resulting nonlinear minimization
problem, Newton-type techniques [17], [18] can be
used with suitable start values in parameter space.
pros The memory requirements are comparable to

the adaptive subdivision algorithm. As the
distance calculation is reduced to a standard
problem of numerical optimization, highly-
optimized numerical libraries can be used.

cons The B́ezier approximation has some addi-
tional runtime overhead, but can be cached
with the subdivision mesh. The following dis-
tance minimization requires considerable tun-
ing of the step sizes. The choice of the start pa-
rameter of the Newton-like iteration has more
influence on the runtime than the size of the
model.
Furthermore the conversion of Catmull-Clark
subdivision to bicubic B́ezier patches is
patent-registered (“Approximation of Catmull-
Clark subdivision surfaces by Bézier patches”,
United States Patent No. 6950099).

4 Implementation

In order to allow a thorough comparison of the cho-
sen algorithms some implementation issues are dis-
cussed in detail.

4.1 Evaluation Errors

The triangulation-based methods use a fixed, uni-
form subdivision depth of three subdivisions. Note
that the use of limit points improves the approxima-
tion error, which can be bounded by a factor times
the maximum of the triangle’s side lengths, where
the factor depends on the model. The limit points lie
in the convex hull of the B́ezier control mesh instead
of the convex hull of the corresponding face’s 1-ring
in the Catmull-Clark mesh. This error has been used
to set the termination condition of the adaptive sub-
division algorithm. Therefore, the adaptive version
has a maximum subdivision depth of three, but it is
allowed to terminate earlier, if the resulting maxi-
mum error is of same size.

The B́ezier surface patches resulting from the
conversion have a deviation from the Catmull-Clark
surface patches only in irregular patches. But the
subsequent parameter search, which works with the
Bézier representation, produces an error by itself.
With the termination condition in parameter space it
is difficult to control the distance error because the
threshold in parameter space depends on the cur-
vature near a minimum point’s parameter. In our
experiments we used only a fixed threshold.

The accuracy of the First-Hit algorithm is deter-
mined by the triangulation error plus

√
3 times the

grid cell size.

4.2 Grid Size Problems

The grid cell size is not only responsible for the
algorithm’s accuracy. The choice of a reasonable
value affects the algorithm’s performance signifi-
cantly. Unfortunately, the value depends on the dis-
tribution of the cached geometric primitives (trian-
gles, B́ezier patches, etc.) within space. Without
additional knowledge only some heuristics are at
hand. Letd be the bounding volume’s diagonal
length, andp be the number of geometric primi-
tives to hash. If all objects are distributed uniformly
in their bounding volume, a grid cell size ofd/ 3

√
p

is a reasonable choice. If the surface of a geomet-
ric object is not distributed uniformly in space, the



Figure 2: This Figure demonstrates the correlation between grid cell size and runtimes of hashing-based
algorithms. The used test object “pawn” has been triangulated (8 862 triangles). All triangles reside inside
the axis-aligned bounding box whose diagonal has a length of 3.94. According to the heuristics in Equation
1 the cell size should be between3.94/ 3

√
8862 ≈ 0.19 and3.94/ 5

√
8862 ≈ 0.65. The needed time in

milliseconds to calculate the distance of 10 000 arbitrary points to the triangle mesh using the First-Hit
algorithm is plotted against the used grid cell size.

grid should be coarsened. In our implementation
the grid cell size had been chosen to

s :=
d

n

√
p

(1)

with 3 ≤ n ≤ 5, which has led to feasible runtimes.
An illustrative example in Figure 2 shows the corre-
lation of cell grid size and evaluation time for a test
object.

4.3 Hashing

All presented algorithms use grid-based hash-
ing. We used the hashing function presented by
MATTHIAS TESCHNER [12]. It takes the indices
(x, y, z) of a grid cell and returns the hash value

hash(x, y, z) = (x p1 xor y p2 xor z p3) modn
(2)

using the prime numbersp1 = 73 856 093, p2 =
19 349 669, p3 = 83 492 791. The function can

be evaluated very efficiently and produces a com-
paratively small number of hash collisions for small
hash tables of sizen. The traversal within the grid
structure is illustrated in Figure 3.

4.4 Slates for Subdivision Surfaces

The adaptive subdivision algorithm does not modify
the base mesh. Instead a separate data structure is
used consisting of two so-calledslates.

A slate is composed of a two-dimensional array
table of size

(2sd + 3)2

and four one-dimensional corner arrays of size

(val − 4) · 2,

wheresd is the maximum subdivision depth and
val the maximum valence. For performance rea-
sons, the slates are allocated statically as they can
be reused for each face to be tessellated.



Figure 3: The storage of a model in a reg-
ular grid allows a fast preselection of relevant
patches/triangles, which are near the query point
(red). In combination with a good hash function the
memory footprint is proportional to the number of
model primitives.

The subdivision process firstly collects the 1-
neighborhood of the considered facef and stores
it in the first slate. The vertices off and the vertices
of its edge neighbor faces are stored in the table.
If one of the vertices off has valence greater than
four, the remaining vertices are stored in the dedi-
cated corner arrays. Figure 4 illustrates this storage
scheme for a quad. Other configurations and further
details on slates can be found in “Adaptive Tessel-
lation of Subdivision Surfaces” [13].

The subdivision algorithm processes the vertices
row by row and stores the result of one subdivision
step in the second slate.
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Figure 4: The adaptive subdivision algorithm stores
the collected 1-neighborhood of a facef from the
base mesh (left) in a data structure called slate
(right).

For the next step, source and destination slates
are swapped. After two subdivision steps, the al-
gorithm starts calculating distances from the corre-
sponding limit points of the 25 (5 × 5) vertices to
the query point. For the following subdivision steps,
only a subpart of 9 (3×3) vertices of the table array
is used, see Figure 5. The subpart is chosen depend-
ing on the results of the distance calculations. The
process is repeated until the difference of the mini-
mal distance for the current and the last iteration is
below a user defined threshold.
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Figure 5: After the second subdivision step each
face of the control mesh consists of5 × 5 vertices.
During the distance calculation only relevant sub-
parts out of nine possibilities are processed further
on. Five possible sectors are illustrated on the left,
four on the right.

5 Benchmarks

The test scenario is made of six subdivision surface
models.

1. Pawn This object consists of 70 patches. Its
triangulation at subdivision level 3 has 8 862
triangles.

2. Rook Within the test scenario this object is
the most complex one. It is composed of
1 454 subdivision surface patches, respectively
185 328 triangles.

3. Knight The control mesh of this model has 78
faces. Triangulated after three successive sub-
divisions it consists of 9 356 triangles.

4. Bishop The bishop is modeled using 130
patches. In this case the triangulation-based
algorithm have to handle 16 542 triangles.

5. QueenThis model has 387 subdivision surface
patches which results in a triangulation with
49 508 elements.

6. King The king consists of a subdivision mesh
with 175 faces. Its tessellation with 19 560
triangles ranges in the midfield of the test sce-
nario.



Figure 6: The test objects are Catmull-Clark surfaces. The smallest object – the Pawn – has a subdivision
control mesh which consists of 70 faces. The most complex model is theRook with 1 454 patches. Its
triangulation at subdivision level 3 has 185 328 triangles. The triangulation-based algorithms as well as the
adaptive subdivision one correlates with the model’s complexity in contrast to the approach using B́ezier
conversion and numerical optimization. This algorithm is rather determinedby internal parameters (initial
optimization values, etc.) than by model complexity.

During each test an algorithm has to calculate the
distance between the test object and 10 000 arbi-
trary query points. The query points are uniformly
distributed within a box whose volume is twice as
large as the test object’s axis-aligned bounding box
(AABB) volume. Each test model has a closed 2-
manifold boundary and the query points may be lo-
cated inside and outside of it; whereas the returned
distance has no sign and does not distinguish be-
tween interior and exterior.

The runtimes of these tests are shown in Figure
6. The results indicate some interesting facts. Both
the adaptive subdivision technique and the Bézier
conversion approach use the same 3D hashed grid
structure to identify relevant patches with a grid cell
size ofd/ 3

√
p, whereasd denotes the AABB diag-

onal andp the number of patches in the base mesh.
The adaptive subdivision depends on the number of
relevant patches which correlates with the model’s
complexity. But the B́ezier conversion is rather de-

termined by internal parameters (start values for nu-
merical iterations, etc.) than by model complex-
ity. This calculation overhead is almost independent
from the input data and surmounts the time needed
by the adaptive subdivision approach several times.

Another interesting point which can be seen in
the diagram is the speed-up factor of the first-hit al-
gorithm. Compared with the variant which checks
additional grid cells in order to return the exact dis-
tance instead of an approximation the first-hit ver-
sion is three times faster (o/ ≈ 3.09). Of course,
both algorithms use the same grid size. The number
of grid cells is proportional to the number of trian-
gles in the tessellation.

While it is normally not recommended to triangu-
late a subdivision surface ahead of time, the first hit
version has similar timings as the adaptive evalua-
tion technique, at least for small- and medium-sized
models.



6 Conclusion

According to the benchmarks presented above, the
distance between an arbitrary point and a subdivi-
sion surface should be determined using an efficient
space partitioning technique such as hashed, regular
3D grid and an on-the-fly subdivision surface evalu-
ation algorithm. The result is a distance calculation
which

• needs considerably less memory than triangu-
lation based approaches, and

• is the fastest method in most cases.
The only negative point of the adaptive subdivision
method is its complex implementation. The conver-
sion method may use numerical libraries and the tri-
angulation methods can use wide-spread, standard
techniques, whereas an efficient, on-the-fly evalua-
tion of subdivision surfaces must be implemented
efficiently for the mesh structure used.

Therefore, the triangulation-based approach with
the first-hit termination might be considered for
small model sizes, if the perpendicular point is not
needed and if an approximation of the distance is
enough. In all other cases the adaptive subdivision
technique is the best choice.
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