
IEEE JOURNAL, 2006 1

Two Different Views On Collision Detection
Torsten Ullrich, Christoph Fünfzig, and Dieter W. Fellner

Abstract— The realistic movement of geometry governed by
physics is necessary for many applications. Changes of move-
ments occur at events, where geometries collide. For real-time
applications the collision detection must be as fast as possible.

While conceptually simple, the collision detection excels in its
intrinsic complexity. Naive approaches to determine all collisions
of n objects require a runtime of O(n2), which will rapidly be
too much in practice.

Innumerable algorithms with reduced runtime complexity
have been developed in the last decades. They can be classified
according to different schemes regarding e.g. field of application
or solution strategy. This article differentiates by the algorithms’
background: computational geometry or signal processing, and
presents a representative of each domain. The main characteris-
tics of both algorithms are simplicity and efficiency.

Index Terms— collision detection, computational geometry,
signal processing, distance fields, axis-aligned bounding boxes,
wavelets

I. I NTRODUCTION

COLLISION detection is an algorithmic problem all areas
of computer science related to the simulation of physical

objects in motion have to deal with. The field of application
ranges from robotics and computer-aided manufacturing to
computer games and virtual reality.

Collision detection algorithms can be classified in various
ways: according to the geometric object model used, to the
characterization of the solving strategies or to theoretical
concerns such as worst-case complexity. This article differenti-
ates by the algorithms’ background. Many collision detection
algorithms have been developed in recent years, but all of
them have a common origin in either computational geometry
or signal processing.

The most important difference between computational ge-
ometry and signal processing is the discrete nature of com-
putational geometry. Although all problems that are solvedon
digital computers must be formulated in a discrete form, some
applications deal with discrete approximations to continuous
phenomena.

In image processing, for example, filtering operators are
written in a continuous setting and need to be discretized in
order to find numerical solutions, whereas in geographic infor-
mation systems (GIS) road networks have per se a discretized
structure.

II. COLLISION DETECTION

Within physical simulations collision detection answers the
question whether two or more given objects collide. To reduce
the quadratic complexity of testing all objects with each other,
proximity queries and space partitioning are used.

This broad phase extracts only potential collision pairs. The
following narrow phase performs a precise collision detection

Fig. 1. Wavelet theory is an very effective tool in image processing based
on multiresolution analysis. A wavelet compression algorithm represents an
image as a set of real coefficients. Most of the wavelet coefficients of a typical
image are nearly zero, so that the image is well-approximated with a small
number of non-zero wavelet coefficients omitting the almost zero coefficients.
The algorithm achieves a good compression ratio, while maintaining the
image’s quality.

for each potential collision pair with the objects’ model
representation.

In this article we present two algorithms for a precise
collision detection between two potentially colliding objects.
The first one uses axis-aligned bounding boxes (AABB)
and is a typical representative of a computational geometry
algorithm, whereas the second one uses spherical distance
fields originating in image processing. Both approaches have
to address the challenges of collision detection algorithms:

• Just in Time: Collision detection is a very time con-
suming task that can easily consume the majority of an
application’s total run time. A slow algorithm is a burden
to every virtual reality system, whereas a rapid one may
produce amazing experiences.

• No resources: Related to the time critical aspects of
collision detection is the algorithmic time-space trade-
off that can be perceived perspicuously in large virtual
environments: Complex scenes require a lot of memory
themselves which forbids to use extensive, additional data
structures.

• All inclusive: All collision detection algorithms use
object representations that allow an early exclusion of
far-flung objects. Bounding objects of simple shape are
applied. These simple objects substitute the original ob-
jects in different resolutions. All simplified objects have
in common that they enclose the original object (or parts
of it) in order to not miss a potential collision.

The two algorithms are introduced in the following sections
emphasizing their strengths and weaknesses.

III. A XIS-ALIGNED BOUNDING BOXES

Many collision detection algorithms are based on bounding
volumes. If the bounding volume is a box, whose axes are
aligned with the axes of the coordinate system, it is called
an axis-aligned bounding box (AABB). Bounding volume



IEEE JOURNAL, 2006 2

Fig. 2. During the preprocessing steps for the axis-alignedbounding box data structures a model is enclosed by its bounding box (outer left). Afterwards
the bounding box is split at its longest edge into two bounding boxes that are refitted to the contained model parts. This subdivision process continues until
the desired granularity is reached (outer right).

hierarchies based on AABB rank among the simplest collision
detection algorithms. If for each object and object part the
coordinate system is chosen newly based on the object’s
points, the resulting box is called an oriented bounding box
(OBB).

Fig. 3. The intersection test of two axis-aligned bounding boxes can be
performed using a few interval comparisons. If and only if all coordinate
intervals of both bounding boxes overlap, the bounding boxes intersect. In
case of rotations, one’s AABB has to be realigned to the other’s coordinate
axes.

A. Preprocessing

The preprocessing step determines a model’s bounding box
aligned to the coordinate system. In many commonly ac-
cepted model representations (polygonal descriptions, Bézier
surfaces, etc.) this is an easy minimum/maximum search over
all (control) vertices.

Afterwards, the bounding box is split at its longest edge
into two bounding boxes that are refitted to the model. This
subdivision process is called recursively by all boxes downto

the desired granularity. This process is illustrated in Figure 2.
The bounding boxes are stored in a tree structure (AABB tree).

B. Intersection Test

A single bounding box is typically stored using two points.
The intersection test uses these two points in order to de-
termine the boxes’ projection onto the coordinate axes. The
enclosing intervals on the coordinate axes can be read off
easily.

Two bounding boxes overlap, if and only if all coordinate
intervals of both bounding boxes intersect. A two-dimensional
configuration is shown in Figure 3.

The algorithm uses the presented data structure to exclude
irrelevant candidates as fast as possible. A collision check
of two models starts by checking the root bounding boxes.
If these boxes do not overlap, a collision is not possible.
Otherwise, descending the AABB tree both bounding volumes
are refined and checked again. The last refinement level has
to work on the model’s primitive representation.

C. Pros & Cons

The AABB based collision detection has many advantages.

• The algorithm is easy to understand and to implement. A
simple AABB collision detection consists normally of a
few lines of code.

• The implementation of this algorithm is numerically sta-
ble. Even the usage of floating-point values is extremely
stable in combination with a bounding box offset within
the magnitude of floating-point precision.

Fig. 4. Having a fixed orientation of a bounding volume (e.g. axis aligned) an
optimal enclosure of an arbitrary object is not possible in general. This Figure
shows the optimal object orientation in contrast to the orientation illustrated
in Figure 2.



IEEE JOURNAL, 2006 3

• The algorithm has no restrictions concerning the under-
lying model representation (polygonal models, free-form
surfaces, B-Rep models, etc.).

Regrettably, the algorithm also has some inherent disadvan-
tages.

• The alignment of all bounding boxes according to the
coordinate system simplifies the intersection test, but it
has suboptimal tightness in the general case. There can
be a big difference between the optimal bounding box
and the axis-aligned bounding box of an object.

• Another problem is the inability to reuse the AABB data
structure during object rotations. If an object is rotated
along an arbitrary axis, its bounding boxes have to be
realigned (using the object’s bounding box) as illustrated
in Figure 3 or even recalculated (from the object’s points).

IV. WAVELETS/DISTANCE FIELDS

The second algorithm presented in this article has its origins
in signal processing. It uses spherical distance fields to speed
up collision checks.

THE EXPECTEDRUNNING TIME OF COLLISION DETECTION WITH AABB T REES

In search of an algorithm suitable for a particular problem,
its running time plays an important role – especially the
expected running time of an algorithm is the measure of
its quality. The worst case scenario plays a minor role.
In order to answer a collision query of two objects the
AABB-based collision detection algorithm traverses both
bounding volume hierarchies. The required time to answer
the query consists of

• initial setup costs,
• the costs of a single bounding volume/bounding vol-

ume overlap test multiplied by the expected number
of overlap tests, and

• the costs of a single primitive/primitive intersection
test which also has to be multiplied by the expected
number of intersection tests.

In an asymptotic analysis the number of overlap testsN
defines the running time. While it is obvious thatN = n2

in worst case, this number is linear or even logarithmic for
most practical cases (n denotes the number of bounding
volumes each of the two query objects owns).
The conditional probabilities that a pair of bounding vol-
umes overlap can be estimated using geometric reason-
ing. R. Weller, J. Klein, and G. Zachmann presented
this reasoning in "A Model for the Expected Running
Time of Collision Detection using AABB Trees" on the
Eurographics Symposium on Virtual Environments 2006.
Assuming that the two root bounding volumes overlap the

expected number of overlap tests only depends on scaling
factors that relate the size of a bounding volume to the size
of its children.
For the sake of clarity and simplicity these scaling factors
αx, αy, andαz along each axis shall be constant throughout
the hierarchies of the query objects. Then the expected
number of overlap tests can be estimated by

N(n) ≤
lgn

∑
i=1

4i
·αi

x ·α
i
y ·α

i
z ∈ O

(

nlg(4αxαyαz)
)

.

Plugging this estimation into a cost functionT (n) yields
an overall time estimate that is illustrated in Table 1. The
frequently used implementation, which divides a bound-
ing volume in the middle of its longest edge into two
parts (with a small overlap) has a scaling product of
αx ·αy ·αz ≈ 1/2, i.e. the expected running time is linear
to the number of bounding volumes.

αx ·αy ·αz T (n)

< 1/4 O(1)

1/4 O(lgn)

1/2 O(n)

3/4 O(n1.58)

1 O(n2)

Table 1. Effect of the scaling factor product on the running time of a

AABB-based collision query.

A. Preprocessing

During the preprocessing step the algorithm takes an initial
model and determines a model center. According to this center
point the model is transformed into spherical coordinates and
sampled into several intervals. For each sample the maximum
radius is stored. Figure 5 illustrates this process. The 2D case
is shown for clarity.

The basic concept used in the preprocessing step works
similarly to a wavelet transform. It starts with the high
resolution object and derives objects of lower resolution by
storing the differences in detail coefficients, in order to be
able to reverse this operation.

An efficient implementation of this process may store all
coefficients within some fixed-sized arrays.

For correctness a low resolution model must bound all mod-
els of higher resolution. Therefore, the Haar basis functions,
which are used among others in image processing, e.g. in
Figure 1, and which describe an averaging and differencing
process, are unsuitable. For our purpose, maximizing and
minimizing functions have to be taken as presented in Figure
5. Therefore, each object will be transformed into an inscribed
circle and a circumference in lowest resolution.



IEEE JOURNAL, 2006 4

Fig. 5. The distance field based collision detection algorithm uses a spherical sampling of an object (outer left) and applies maximum filters to it. The results
of these filters are shown in the figures. At the lowest level a bounding sphere encloses the whole object (outer right).

B. Intersection Test

Having transformed all objects this way, it is possible to
perform a fast collision test, which will be demonstrated bya
pineapple and a red pepper.

At runtime, the intersection test starts with the model
representation at lowest resolution and tests whether they
collide or not. If this test is positive, the level of detail will be
increased. Thereby it is important for performance that only
intersecting sectors are considered further on.

This principle is illustrated in Figure 7, which shows the
various stages during a collision test.

As long as there are intersecting sectors of different objects,
the algorithm refines the objects. If the algorithm reaches the
highest resolution of an object, the collision test is performed
on the object primitives.

In 2D the intersection test has to check whether two
segments overlap. In 3D two capped cones have to be checked.
In contrast to the previous algorithm where two boxes can be
checked by comparing a few intervals, the intersection testfor
two capped cones is non-trivial.

Subject to the orientation of the cone axes, two cases are
analyzed. The first case deals with nonparallel axes; the second
one with parallel lines. A heuristically chosen (angle) threshold
distinguishes between the nonparallel and the parallel case.

In the nonparallel case for both axes the shortest distance
and the according perpendicular pointsP1, P2 are determined.
The test itself considers cone section. One cone is intersected
with a plane containing the first cone’s center and the line
throughP1 andP2. This results in a well-known cone section.
The first cone is reduced to a line which passes the first
cone’s center and the point which you get by translatingP1

within the considered plane towards the cone section’s focus.
The intersection test is then reduced to a 2D intersection test
between a cone section and a line.

In the parallel case the algorithm analyzes the projection
of one cone onto the other cone’s axis and vice versa. For
each projection two distance checks of points against their
according radii are performed, which results in a total of four
checks. The special case of parallel lines is handled separately
for optimization, as in this case the whole test can be done by
some interval checks, which are much faster.

Together with a quick rejection test (consider bounding
cylinders instead of cones) and a quick acceptance test (con-
sider spheres inside the cones) for the nonparallel case the
algorithm is reasonably fast.

C. Pros & Cons

The distance field based algorithm has some advantages and
disadvantages. The advantages involve among other things

• the algorithms ability to reuse an objects distance field
while the object is translated and rotated. The initial
preprocessing does not need any updates.

• The algorithm has no restrictions concerning the under-
lying model representation (polygonal models, free-form
surfaces, B-Rep models, etc.).

• The algorithm is easy to understand, although it is not
very easy to implement.

The only problem this algorithm is how to cope with non-
star-shaped objects. This problem affects the algorithm’sspeed
but not its correctness.

Fig. 6. For aspect ratios much larger (resp. much smaller) than one, the
contained volume differs largely in sphere sections from onecenter point.
Using several center points can improve extreme aspect ratio cases.

Concerning usage of a single center point, one has to pay
attention to the object’s aspect ratio (i.e. the volume ratio of
the smallest bounding sphere to the largest contained sphere).
For extreme ratios, it is reasonable to switch to a small number
of center points instead of a single center point.

V. SUMMARY

This article presented two collision detection algorithms,
which are suitable for all model types, e.g., polygon soups,
surfaces or volumetric models. They are simple to understand
and their memory footprint is linear in the model complexity.

Both approaches are scalable in the information they give
in collision determination. If they analyze a possible collision
only up to a fixed refinement level, the collision time only
depends on the granularity of the bounding volumes, but not
on the primitives’ count of the model. Due to this fact it



IEEE JOURNAL, 2006 5

Fig. 7. At runtime the intersection test starts with the bounding volume at lowest resolution (outer left). As long as different bounding volumes intersect,
the volumes are refined. Sectors which do not collide with other sectors are not considered further on. At highest resolution (outer right) only model part
belonging to colliding sectors have to be checked for collision. Depending on the model representation appropriate algorithms have to be used.

is possible to estimate the time bounds for the collision test
tightly.

Although both algorithms have many similarities and at-
tributes in common, they have different origins: The AABB-
based algorithm uses discrete structures such as partitiontrees
to achive the necessary refinement, whereas the distance field-
based algorithm uses a refinement strategy known from signal
processing. It reads the model details out of an array as they
are necessary. It therefore deals with discrete approximations
to continuous phenomena.

VI. FURTHER READINGS

Collision detection based on AABB is a well-known ap-
proach. It is a standard algorithm described in introductory
courses on computer graphics. A good overview is given, e.g.,
in the book "Real-Time Rendering" by Tomas Akenine-Möller
and Eric Haines (A.K. Peters Limited) and further details
can be found in the book "Realtime Collision Detection" by
Christer Ericson (Series in Interactive 3D Technology, Morgan
Kaufmann Publishers).

The second algorithm has been developed by C. Fünfzig,
T. Ullrich and D. W. Fellner. It is described in the article
"Hierarchical Spherical Distance Fields for Collision Detec-
tion" published in IEEE Computer Graphics & Applications
(January/February 2006).


